способ получения монолитного кварцевого стекла

Классы МПК:B82B3/00 Изготовление или обработка наноструктур
C03B8/02 жидкофазными способами
Автор(ы):, ,
Патентообладатель(и):Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова РАН (RU)
Приоритеты:
подача заявки:
2011-04-21
публикация патента:

Изобретение относится к способу получения высокочистого и бездефектного кварцевого стекла по золь-гель технологии. Технический результат изобретения заключается в снижении температуры синтеза кварцевого стекла и уменьшении количества примесей в получаемом стекле. Получают золь гидролизом тетраэтилортосиликата раствором соляной кислоты. Вводят в золь предварительно полученный золь кремнезема с размером частиц менее 100 нм. На стадии гелеобразования вводят структурирующий агент, в качестве которого используют амиды органических кислот. Затем образовавшийся гель выдерживают в дисперсионной среде, а термообработку проводят при температуре 1000-1050°С. 4 з.п. ф-лы, 3 пр.

Формула изобретения

1. Способ получения кварцевого стекла, включающий образование золя гидролизом тетраэтилортосиликата раствором соляной кислоты, введение в золь наполнителя, образование геля, его высушивание и термообработку заготовки для получения кварцевого стекла, отличающийся тем, что на стадии гелеобразования вводят структурирующий агент, в качестве которого используют амиды органических кислот, в качестве наполнителя в золь вводят предварительно полученный золь кремнезема с размером частиц менее 100 нм, затем образовавшийся гель выдерживают в дисперсионной среде, а термообработку проводят нагревая до температуры 1000-1050°C.

2. Способ получения кварцевого стекла по п.1, отличающийся тем, что в качестве структурирующего агента используют амиды муравьиной или уксусной кислот.

3. Способ получения кварцевого стекла по п.1, отличающийся тем, что образовавшийся гель высушивают в течение 12-120 ч при температуре 60-80°C.

4. Способ получения кварцевого стекла по п.1, отличающийся тем, что полученную заготовку кварцевого стекла выдерживают при температуре 1000-1050°C в течение 30-60 мин.

5. Способ получения кварцевого стекла по п.1, отличающийся тем, что исходные компоненты вводят в следующем соотношении, моль:

тетраэтилортосиликат 1
вода 5-15
соляная кислота0,03-0,15
структурирующий агент0,05-0,15
золь кремнезема 0,8-1,2

Описание изобретения к патенту

Изобретение относится к стекольной технике, а именно к способам получения высокочистого и бездефектного кварцевого стекла по золь-гель процессу, и может быть использован для производства изделий электронной и оптической, в частности лазерной, промышленности.

Известны золь-гель способы производства кварцевого стекла, разработанные в последние десятилетия и которые нашли широкое применение в современных технологиях (Е.Н.Подденежный, А.А.Бойко. Золь-гель синтез оптического кварцевого стекла. Гомель, 2002, 208 с.). Тем не менее, получение монолитных, не растрескивающихся при высушивании и спекании образцов представляет достаточно сложную технологическую задачу и требует учета большого числа факторов - состава исходной золь-гель системы, температуры синтеза, давления, скорости и продолжительности нагревания геля при высушивании и спекании, условий обработки гелей специальными газами и т.д. Поэтому любые попытки упростить и оптимизировать золь-гель синтез, уменьшить температуру и продолжительность процесса заслуживает самого пристального внимания.

Известны патенты (например, US 6698054 В2 или US 6860118 В2), основанные на одно- или двухстадийном золь-гель процессе с использованием тонкодисперсного распыленного порошка кремнезема. Указанный порошок гомогенизируют с деионизированной водой, а затем полученный золь подвергают гелеобразованию либо изменяя кислотность среды, либо вводя специальные гелеобразующие реагенты, например HF, NH4F, (NH 4)2SiF6 и др. и, возможно, полимеры - во избежание растрескивания монолитных образцов. Высушивание полученного материала с последующим спеканием приводит к искомым образцам оптического кварцевого стекла. Общим недостатком известных способов является большой размер пор образующегося при гелеобразовании материала, что заставляет повышать температуру его спекания до 1400-1500°C (для получения прозрачного кварцевого стекла).

Известен способ получения монолитного кварцевого стекла, описанный в [Brinker С.J., Scherer G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. San Diego: Acad. Press, 1990. 908 p.], включающий использование алкоксидов кремния. К недостаткам способа можно отнести очень высокую степень усадки (более чем 60%) и весьма продолжительный период высушивания, обусловленный очень малым размером образующихся при этом пор. Попытки интенсификации процесса высушивания приводят к неминуемому растрескиванию образцов из-за высокого капиллярного давления, развивающегося при удалении дисперсионой среды из монолита.

Наиболее оптимальным представляется смешанный способ проведения золь-гель процесса, при котором трехмерная сетка кремнегеля образуется за счет гидролитической поликонденсации алкоксидов кремния, а вводимые на втором этапе золь-гель синтеза нанодисперсные частицы кремнезема обеспечивают возможность интенсификации процессов высушивания армированных ими монолитов. В качестве ближайшего аналога выбран способ получения оптического кварцевого стекла - А.с. 1749185 [1992 г.], при котором монолитное кварцевое стекло получают гидролизом тетраэтилортосиликата (ТЭОС) под действием водного раствора соляной кислоты, введением в золь-гель систему наполнителя - высокодисперсного кремнезема, гелированием системы посредством добавления аммиака (до рН 5-7), промывки образованного геля, высушивания и термообработки его до состояния кварцевого стекла.

Указанный способ - ближайший аналог нашего изобретения - имеет ряд существенных недостатков. Во-первых, введение в золь-гель систему аммиака приводит к очень быстрому (несколько минут) образованию геля. Образующаяся при этом трехмерная кремнеземная сетка плохо структурирована и не однородна, что существенно уменьшает процент годных изделий после термообработки из-за их растрескивания. Во-вторых, размеры частиц вводимого кремнезема, хотя и высокодисперсного, имеет микроразмеры, поэтому для образования прозрачных образцов необходимо их нагревание до 1250-1300°C.

Задачей настоящего изобретения является разработка способа получения по золь-гель технологии оптически прозрачного кварцевого стекла при температурах не выше 1000-1050°C. Снижение температуры синтеза на 200-250°C актуально не только в виду экономии энергии, но и с точки зрения чистоты получаемого стекла за счет уменьшения летучести примесей, загрязняющих получаемые монолиты.

Поставленная задача решается тем, что к гидролизату ТЭОСа, полученного взаимодействием последнего с водным раствором соляной кислоты, дополнительно вводят в отличие от ближайшего аналога, вместо аммиака амиды органических кислот, например формамид, диметилформамид, диметилацетамид:

способ получения монолитного кварцевого стекла, патент № 2482058 способ получения монолитного кварцевого стекла, патент № 2482058 способ получения монолитного кварцевого стекла, патент № 2482058

Введенная в золь-гель систему соляная кислота постепенно реагирует с указанными амидами, при этом образуются слабые органические кислоты - уксусная или муравьиная. Кислотность гидролизата равномерно уменьшается, что промотирует процесс гелеобразования и структурирования золь-гель системы. Использование золей кремнезема с размером частиц, например, менее 100 нм позволяет повысить однородность структуры монолитного геля, уменьшить размер пор и понизить температуру (на 200-250°C по сравнению с ближайшим аналогом) его спекания в прозрачное кварцевое стекло и, как следствие, уменьшить количество примесей, образующихся в заготовках за счет летучести материалов, из которых изготовлены стенки печи, тигли и т.д.

Техническим результатом предлагаемого изобретения является достижение основных характеристик кварцевого стекла (плотность 2,18-2,19 г/см3 и оптическая прозрачность на длине волны 200 нм) при нагреве до температуры 1000-1050°C, снижение затрат энергии и повышение чистоты полученного материала.

Кроме того, после завершения процесса гелеобразования образовавшийся гель высушивают в течение 12-120 часов при температуре 60-80°C, а полученную заготовку кварцевого стекла выдерживают при температуре 1000-1050°C в течение 30-60 минут. При этом исходные компоненты вводят в следующем соотношении: тетраэтилортосиликат - 1 моль, вода - 5-15 моль, соляная кислота - 0,03-0,15 моль, структурирующий агент - 0,05-0,15 моль, золь кремнезема - 0,8-1,2 моль.

Ниже приведены конкретные примеры реализации заявляемого способа.

Пример 1.

К 208 г (1 моль) ТЭОС добавляют 108 г (6 моль) воды и 4,93 г (0,05 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 5 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 2,25 г (0,05 моль) структурирующего агента - формамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 30 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO2) золя кремнезема. После этого результирующий золь разливают в 10 полипропиленовых форм и проводят гелеобразование при температуре 70°C в течение 2 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 60-70°C в течение 120 часов. Высушенные гели подвергают термообработке до 1000°C, выдерживая при 1000°C в течение 30 минут. В результате получены 10 цилиндрических образцов прозрачного кварцевого стекла без трещин, пузырей и вздутий.

Пример 2.

К 208 г (1 моль) ТЭОС добавляют 90 г (5 моль) воды и 9,86 г (0,1 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 10 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 7,3 г (0,1 моль) структурирующего агента - диметилформамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 40 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO 2) золя кремнезема. После этого коллоидную систему разливают в 10 тефлоновых банок и проводят гелеобразование при температуре 60°C в течение 3 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 75-80°C в течение 120 часов. Высушенные гели подвергают термообработке до 1050°C, выдерживая при 1050°C в течение 60 минут. В результате получены 10 таблеток прозрачного кварцевого стекла без трещин, пузырей и вздутий.

Пример 3.

К 208 г (1 моль) ТЭОС добавляют 180 г (10 моль) воды и 14,79 г (0,15 моль) 37% соляной кислоты. Смесь интенсивно перемешивают 5 минут до ее гомогенизации, после чего охлаждают до комнатной температуры и добавляют 13,05 г (0,15 моль) структурирующего агента - диметилацетамида.

Полученную систему помещают в сушильный шкаф и выдерживают при температуре 60°C в течение 30 минут. Обработанную таким образом смесь охлаждают до комнатной температуры и при интенсивном перемешивании добавляют к ней 150 г (1 моль в пересчете на SiO2) золя кремнезема. После этого результирующий золь разливают в 10 полипропиленовых форм и проводят гелеобразование при температуре 70°C в течение 2 суток.

После формирования гелей их промывают в дистиллированной воде и сушат при 65-70°C в течение 108 часов. Высушенные гели подвергают термообработке до 1050°C, выдерживая при 1050°C в течение 30 минут. В результате получены 10 цилиндрических образцов прозрачного кварцевого стекла без трещин, пузырей и вздутий.

Класс B82B3/00 Изготовление или обработка наноструктур

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс C03B8/02 жидкофазными способами

материал на основе кремниевого золя для изготовления биологически расщепляющихся и/или рассасывающихся силикагелевых материалов, их изготовление и применение -  патент 2460697 (10.09.2012)
золь-гель-процесс -  патент 2445277 (20.03.2012)
жаростойкие волокна -  патент 2427546 (27.08.2011)
способ золь-гель для получения изделий из стекла -  патент 2363667 (10.08.2009)
способ получения кварцевого стекла -  патент 2319672 (20.03.2008)
раствор для получения бесщелочного термостойкого стекла -  патент 2273607 (10.04.2006)
способ получения стеклянных микросфер с регулируемыми свойствами из синтетических шихт -  патент 2235693 (10.09.2004)
способ приготовления золь-гельного стекла, активированного красителем -  патент 2209188 (27.07.2003)
раствор для изготовления стеклянных микросфер -  патент 2205802 (10.06.2003)
способ получения композиционного стеклокерамического материала -  патент 2204532 (20.05.2003)
Наверх