способ получения пористого костного биокомпозита
Классы МПК: | A61L27/12 фосфорсодержащии материалы, например апатит A61L27/24 коллаген |
Автор(ы): | Горшенёв Владимир Николаевич (RU), Телешев Андрей Терентьевич (RU), Ершов Юрий Алексеевич (RU), Казиев Гарри Захарович (RU), Колесов Владимир Владимирович (RU), Склянчук Евгений Дмитриевич (RU) |
Патентообладатель(и): | Горшенёв Владимир Николаевич (RU), Телешев Андрей Терентьевич (RU) |
Приоритеты: |
подача заявки:
2012-05-21 публикация патента:
27.05.2013 |
Изобретение относиться к медицине. Описан способ получения пористого коллаген-гидроксиапатитового биокомпозита, который включает синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена, который ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов, а также разлив в форму и лиофильную сушку готового биокомпозита. На первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена, затем, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C и в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды, и обрабатывают в течение 25-35 мин при температуре не выше 77°С. Сшивку волокон коллагена проводят при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора -50°C. Технический результат состоит в получении дисперсии гидроксиапатита в коллагеновом гидрогеле с экспоненциальным распределением твердых фракций размером от менее 0,05 мкм до 1,0 мкм. 5 з.п. ф-лы, 4 пр.
Формула изобретения
1. Способ получения пористого коллаген-гидроксиапатитового биокомпозита, включающий синтез гидроксиапатита на гидрогелевой коллагеновой матрице, сшивку волокон коллагена, разлив в форму и лиофильную сушку готового биокомпозита,
отличающийся тем, что синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов, при этом
на первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена,
на второй стадии, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C,
на третьей стадии в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды и обрабатывают в течение 25-35 мин при температуре не выше 77°C,
на четвертой стадии проводят сшивку волокон коллагена при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем
полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора минус 50°C.
2. Способ по п.1, отличающийся тем, что число оборотов ротора диспергатора на втором этапе составляет 0,8-0,85 от рабочего числа оборотов остальных этапов.
3. Способ по п.1, отличающийся тем, что свиную шкуру перед загрузкой бланшируют при температуре 38-40°C в течение 5-10 мин.
4. Способ по п.1, отличающийся тем, что в процессе подготовки воды ее подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа, отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм 3 и стерилизуют на ультрафильтрационных элементах с размером пор 0,01-0,07 мкм.
5. Способ по п.1, отличающийся тем, что по завершении третьей стадии дополнительно загружают антиоксидант природного происхождения на основе пентагидроксифлавона-дигидрокверцетина в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.
6. Способ по п.1, отличающийся тем, что по завершении третьей стадии дополнительно загружают порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.
Описание изобретения к патенту
Изобретение относится к медицине и биологии, а именно к технологии получения биокомпозитов, стимулирующих восстановление костной ткани, как при ее лечении, так и при протезировании дефектных участков.
Известно, что костная ткань - это природный композит, состоящий из органической и неорганической составляющих. Важнейшими органическими составляющими этой ткани являются вещества белковой природы. Белки образуют межклеточный матрикс, в котором выстраиваются апатитовые структуры [Poh CK, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials. 2010 Mar; 31(7): 1578-85. Epub 2009 Dec 5]. Технология искусственной костной ткани активно совершенствуется, особенно в направлении синтеза наночастиц гидроксиапатита на коллагеновых волокнах [Litvinov S.D., Krasnov A.F., Bulanov S.I. Hydroxo-base implants for orthopaedics and stomatology // Archives of Pharmacology, Suppel.2 to vol. 358, N1, 1998. P.511].
Известен способ формирования костной ткани, когда пересадочный материал приготавливают путем перемешивания деминерализованных и стерилизованных костных частиц с костным морфогенетическим белком (US 4394370, Jefferies, 19.07.1983). Полученную коллагеновую губчатую смесь имплантируют в область пораженного участка кости. Однако полученный в этом случае материал не имеет достаточной степени структурной интегрированности компонентов, кроме того, а сам процесс является низкотехнологичным.
В патенте RU 2053733 C1, Ершов и др., 10.02.1996 описан другой способ формирования костной ткани. Коллагеновый матрикс помещают в жидкий раствор, содержащий ионы кальция, фосфата и гидроксида, а процесс осаждения гидроксоапатита на коллагене проводят под действием электрофореза. Для предотвращения закисления раствора, содержащего ионы кальция, в него добавляют гидроксид или карбонат кальция, что исключает растворение гидроксоапатита (RU 2174848 C1, Литвинов и др., 20.10.2001). Однако при пропускании электрического тока одновременно происходит электролиз раствора соли кальция, в результате которого образуются водород и кислота, что приводит к изменению pH. Вместе с ионами кальция ионы водорода диффундируют в коллаген и частично растворяют образующийся гидроксоапатит. Поэтому, несмотря на высокую степень структурной интегрированности компонентов в отдельных местах коллагена, не происходит равномерного образования солевого компонента во всем объеме имплантата. Кроме того, образуются побочные продукты, снижающие биологическую эффективность получаемого материала.
В патенте RU 2206341 C1, Ершов и др., 20.06.2003 описан способ формирования костного имплантата, включающий диспергирование коллагена в водном растворе, синтез гидроксиапатита путем осаждения его на коллагене в микрогетерогенной среде водного раствора ионов кальция, фосфата и гидроксидов при потенциометрическом контроле pH и реагирующих ионов, при степени диспергирования 1-100 мкм -1 композита коллагена и осажденного на нем гидроксиапатита, после чего полученный композит центрифугируют, сушат при температуре не выше 45°C и стерилизуют. До введения ионов кальция, фосфата и гидроксидов в водный раствор диспергированного коллагена могут вводиться лекарственные вещества (антибиотики, и/или фактор роста, и/или иммуноподавляющие препараты, и/или антисептики). Однако этот способ многостадиен и сложен.
В патенте US 4623553, Ries, et al., 18.11.1986 рассматриваются особенности изготовления костной композиции с использованием очищенного водного раствора коллагена, в котором в качестве сшивающего агента использован формальдегид или глутаровый альдегид, в который затем добавляют зерна гидроксиапатита размером 50-300 мкм. В качестве источника коллагеновых волокон могла быть использована свиная шкура. Известно, что механическая агитация в процессе твердения композита, уже находящегося в форме, например, посредством ультразвуковых колебаний позволяет ориентировать волокна коллагена определенным образом, как бы ощетинивая поверхность коллагена (US 8080060, Govil, et al., 20.12.2011), вместе с тем, такая агитация не используется в процессе синтеза самого композита.
Наиболее близким по техническому существу является способ получения сшитого пористого коллаген-аппатита, включающий стадии гелеобразования и сублимационной сушки полученного биокомпозита (US 7153938, Kikuchi, et al., 26.12.2006 - прототип). Коллаген может быть получен от животных. Водный раствор коллагена в фосфорной кислоте может содержать коллаген в концентрации от 0,1 до 1% по массе. Добавляют водный раствор соли кальция и смесь нагревают до 40°C. При перемешивании скорость от 1 до 400 оборотов в минуту, например, около 200 об -1. После завершения процесса водная апатит-коллагеновая суспензия подвергается сублимационной сушке в вакууме при т-ре -10°C или ниже. Однако этот способ также включает ряд стадий, использует несколько разнородных по выполняемым функциям приспособлений и технологически сложен, кроме того, скорость перемешивания не обеспечивает необходимого равномерного распределения апатита в коллагеновой матрице.
Патентуемое изобретение направлено на решение задачи создания эффективного промышленного способа получения коллаген-гидроксиапатитового костного биокомпозита, позволяющего значительно сократить продолжительность процесса, упростить его технологию, снизить энергозатраты и получить при этом целевой продукт высокого качества.
Патентуемый способ получения пористого коллаген-гидроксиапатитового биокомпозита включает синтез гидроксиапатита на гидрогелевой коллагеновой матрице, сшивку волокон коллагена, разлив в форму и лиофильную сушку готового биокомпозита.
Отличие способа состоит в том, что синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов. При этом на первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена. На второй стадии, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C. На третьей стадии в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды, и обрабатывают в течение 25-35 мин при температуре не выше 77°C. На четвертой стадии проводят сшивку волокон коллагена при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора -50°C.
Способ может характеризоваться тем, что число оборотов ротора диспергатора на втором этапе составляет 0,8-0,85 от рабочего числа оборотов остальных этапов.
Способ может характеризоваться и тем, что свиную шкуру перед загрузкой бланшируют при температуре 38-40°C в течение 5-10 мин.
Способ может характеризоваться также тем, что в процессе подготовки воды ее подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа, отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм3 и стерилизуют на ультрафильтрационных элементах с размером пор 0,01-0,07 мкм.
Способ может характеризоваться также и тем, что по завершении третьей стадии дополнительно загружают антиоксидант природного происхождения на основе пентагидроксифлавона-дигидрокверцетина в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.
Способ может характеризоваться, кроме того, тем, что по завершении третьей стадии дополнительно загружают порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.
Технический результат состоит в получении дисперсии гидроксиапатита в коллагеновом гидрогеле с экспоненциальным распределением твердых фракций размером от менее 0,05 мкм до 1,0 мкм.
Особенность патентуемого способа состоит в использовании в качестве реактора аппарата роторно-пульсационного типа (РПА). Это устройство сочетает в себе принципы работы диспергатора, гомогенизатора и центробежного насоса. Благодаря конструктивным особенностям установки РПА жидкотекучие среды в зоне обработки подвергаются комплексному механоакустическому и тепловому воздействию за счет больших градиентов скоростей, вихреобразования и высокочастотных пульсаций в ультразвуковом диапазоне частот. Для задания заданных температурных воздействий на пульпу устройство содержит контур регулирования и холодильник для отвода тепла. Последовательность загрузки компонентов, их состав и время обработки лежат в рекомендованных интервалах.
Важное значение приобретает выбор источника коллагена. Для этих целей рекомендовано использовать дробленую обезжиренную свиную шкуру, которую предварительно бланшируют в воде при температуре 38-40°C в течение 5-10 мин. Воду для использования в процессе подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа. Далее воду отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм3, а затем стерилизуют ультрафильтрацией на элементах с размером пор 0,01-0,07 мкм.
На заключительной стадии загрузки в РПА вводят пентагидроксифлавон-дигидрокверцетин, известный как «Таксифолин» (Taxifolin), который относится к антиоксидантам натурального происхождения, или биофлавоноидам. Он обладает мощным противовоспалительным и противоаллергенным свойствами, укрепляет и восстанавливает соединительную ткань, способствует снижению уровня холестерина, усиливает действие многих полезных веществ (витамина С и витамина Е); укрепляет сосуды и капилляры, улучшает микроциркуляцию крови, препятствует образованию тромбов. Добавление порошка сухой ламинарии с размером частиц до 5 мкм, как источника альгинатов, обеспечивает улучшение процессов регенерации тканей, обладает кровеостанавливающими свойствами, создает мощный барьер для раневой инфекции.
Пример 1. В РПА при рабочем числе оборотов 3000 об/мин загружают предварительно бланшированную при температуре 40°C в течение 10 мин дробленую обезжиренную свиную шкуру и подготовленную воду. Продукт обрабатывают при гидромодуле 4,5 в течение 30 мин, при этом контролируют температуру продукта (не выше 81°C).
В полученный гидрогель коллагена, не прерывая процесса в РПА, загружают порошок фосфата кальция моногидрата CaHPO 4·H2O в количестве 4,5 М и обрабатывают при температуре 61°C в течение 10 мин при пониженном числе оборотов (2500 об/мин). На третьей стадии в РПА дробно вводят 3,0 М гидроксида кальция Ca(OH)2·2Н2 О, суспендированного в 1 л воды, и обрабатывают в течение 30 мин при числе оборотов 3000 об/мин и температуре не выше 77°C.
На последней четвертой стадии в РПА при рабочем числе оборотов (3000 об/мин) проводят сшивку волокон коллагена при гидромодуле 20, температуре 55-56°C в течение 90 мин. Затем полученный гелеобразный продукт разливают в заданные формы и подвергают лиофильной сушке при температуре коллектора -50°C в течение 32 ч.
Согласно данным анализа зольных элементов, проведенного на лазерном масс-спектрометре «ЭМАЛ-2», атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Ca10H2O26P 6.
Параметры пористой структуры определены из изотермы адсорбции паров азота при температуре -196°C на автоматической вакуумной адсорбционной установке «GRAVIMAT-4303». SБЭТ составляет 79 м2/г.
Размеры частиц твердых фракций определялись на фотоденсиметре ФСХ-5. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.
Пример 2. Режимы и загрузка обезжиренной свиной шкуры соответствуют приведенным для примера 1. Загружают 5,0М СаНРО4·Н2О и суспензию 3,3 М Ca(ОН)2·2Н2О в 2 л воды.
Согласно данным анализа зольных элементов атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,8 мкм. Параметр пористой структуры SБЭТ составляет 78 м2/г.
Пример 3. Режимы и составы соответствуют приведенным для примера 1.
По завершении третьей стадии в РПА с введением 3,0М гидроксида кальция Ca(ОН)2·2H2 O, суспендированного в 1 л воды, и обработки в течение 30 мин при числе оборотов 3000 об/мин и температуре 75°C в полученную пульпу вводят пентагидроксифлавон-дигидрокверцетин в количестве 0,05-0,10 г на 100 г лиофилизированного биокомпозита.
Атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Параметр пористой структуры SБЭТ составляет 79 м2/г. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.
Пример 4. Режимы и составы соответствуют приведенным в примере 1.
По завершении третьей стадии в полученную пульпу вводят порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита. Атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Параметр пористой структуры SБЭТ составляет 77 м2/г.
Размеры частиц твердых фракций регистрировались на фотоденсиметре ФСХ-5. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.
Способ может быть осуществлен с использованием любого промышленного диспергатора циркуляционного типа, например, роторно-пульсационного аппарата РПА «Дельта-ротор» с приводом (Установка РПА (роторно-пульсационный аппарат) 1111.731.00.100, ТУ513*-002-43794424-2008, производство ООО НПП «Авиатехника» г. Казань). Рабочая частота вращения ротора составляет 3000 об/мин; максимальная производительность (по воде) - 20 м3/ч.
Патентуемый способ позволяет получать коллаген-гидроксиапатитовые биокомпозиты высокого качества, существенно упростить технологию процесса, сделать его менее затратным, так как процесс в роторно-пульсационном аппарате осуществляется в условиях саморазогрева реакционной среды и не требует подвода тепла извне.
Класс A61L27/12 фосфорсодержащии материалы, например апатит