термохимический датчик

Классы МПК:G01N27/16 вызванного сгоранием или каталитическим окислением испытуемого материала, например газа, служащего средой для нагреваемого тела 
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" (RU)
Приоритеты:
подача заявки:
2011-12-12
публикация патента:

Изобретение относится к газовому анализу и может быть использовано в газоанализаторах для определения концентрации водородсодержащих горючих газов в окружающей среде и позволяет расширить диапазон измерения концентрации водородсодержащих горючих газов до 100 об.%. Термохимический датчик содержит измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1 , а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4 MnO2. 3 табл., 1 ил.

термохимический датчик, патент № 2483297

Формула изобретения

Термохимический датчик, содержащий измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, отличающийся тем, что в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1 , а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4 MnO2.

Описание изобретения к патенту

Изобретение относится к газовому анализу и может быть использовано в газоанализаторах для определения концентрации водородсодержащих горючих газов в окружающей среде.

Известен термохимический газоанализатор (патент RU № 2119663), содержащий рабочий (чувствительный) элемент в виде спирали, запеченной внутри пористого носителя, обработанного катализатором и установленного в держателе, в качестве держателя используется диэлектрическая подложка с размещенным на ней пленочным нагревателем, выполняющим функцию компенсации изменений температуры окружающей среды. Недостатком данного технического решения является малый диапазон измерения концентрации горючих газов, максимальное значение диапазона не превышает 10 об.%. При увеличении процентного содержания горючего газа в окружающей среде проявляется нестабильность выходных характеристик.

Наиболее близким аналогом является конструкция термохимического датчика (а.с. SU № 1767405), содержащего измерительную схему из резисторов, покрытого катализатором рабочего и каталитически неактивного сравнительного чувствительных элемента, выполненных из нагревательной спирали, которая запечена внутри пористого носителя. Рабочий элемент покрыт катализатором, состоящим из оксидов кобальта и алюминия, сравнительный элемент покрыт каталитически неактивным составом из оксидов кобальта, меди и хрома. Такой состав позволяет улучшить избирательность датчика по отношению к водороду в присутствии других горючих газов. К недостаткам этой конструкции можно отнести малый диапазон измерения концентрации водорода: термохимический датчик не определяет процент содержания газа, превышающий 10 об.%; а также неспособность реагировать на присутствие водорода в бескислородной среде с небольшим процентным содержанием других горючих газов.

Целью изобретения является расширение диапазона измерения концентрации водородсодержащих горючих газов до 100 об.%.

Поставленная цель достигается тем, что термохимический датчик содержит измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора постоянного сопротивления, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1 , а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4 MnO2.

Особенностью термохимического датчика является то, что материал промежуточного слоя обладает протонной проводимостью, а материал каталитически активного слоя является катализатором двух типов реакций: реакции разложения водородсодержащего горючего газа на составляющие его элементы, в том числе и на ионы H2 (протоны), и реакции окисления элементов горючего газа. Ионы водорода диффундируют в промежуточный слой, повышая его проводимость.

Конструкция термохимического датчика представлена на фиг.1. На установочную платформу 1 с закрепленной на ней разделительной перегородкой из слюды 2 крепятся рабочий 3 и сравнительный 4 элементы. Элементы крепятся к проволочным выводам 5, вмонтированным в установочную платформу. Защитный колпачок 6 из пористого материала защищает датчик от механических повреждений извне, не препятствуя прохождению горючих газов.

Рабочий 3 и сравнительный 4 элементы содержат платиновые спирали 7. Спираль каждого элемента запечена внутри пористого носителя 8 из оксида алюминия Al2O3. Промежуточный слой 9 рабочего элемента состава BaO(CeO)0,9(Nd 2O3)0,1 нанесен на пористый носитель. Данный состав промежуточного слоя является оптимальным с точки зрения протонной (ионной) проводимости, которая достигает 10 mSm/cm (600°C) и 20 mSm/cm (800°C) (F.Chen, O.T.Sorensen, G.Meng, D.Peng. Preparation of Nd-doped barium cerate through different routes. Solid State Ionics v.100, 1997, p.63-72). Промежуточный слой покрыт каталитически активным слоем 10 состава (La2 O3)0,6(SrO)0,4MnO2 .Сравнительный элемент датчика поверх пористого носителя 8 из оксида алюминия Al2O3 покрыт каталитически неактивным составом - оксидом кремния SiO2. Промежуточный слой наносится из растворов азотнокислых солей бария, церия и неодима с последующим отжигом. Слой катализатора приготавливают из растворов азотнокислых солей лантана, стронция и марганца, наносят на рабочий элемент поверх промежуточного слоя с последующим отжигом.

Датчик работает следующим образом. На выводы, соединенные с платиновой спиралью, подается рабочее напряжение, температура элемента достигает рабочей Тр (300-500°C). При наличии в окружающей среде регистрируемого газа на рабочем элементе происходит сначала реакция разложения водородсодержащего газа на образующие его элементы, включая ионы водорода, часть которых проникает в промежуточный слой, повышая его протонную проводимость, и затем идет реакция окисления элементов горючего газа с выделением тепла. После повышения температуры увеличивается сопротивление платиновой спирали, а сопротивление промежуточного слоя уменьшается.

Изменение напряжения на чувствительном элементе в зависимости от концентрации регистрируемого газа фиксируется схемой обработки сигнала. Выходной сигнал термохимического датчика является суммой двух сигналов: сигнала, обусловленного уменьшением сопротивления рабочего элемента за счет увеличения протонной проводимости промежуточного слоя, и сигнала, обусловленного увеличением сопротивления рабочего элемента за счет увеличения сопротивления платиновой спирали из-за повышения температуры вследствие окисления элементов горючего газа. Во всем диапазоне измерения концентрации водородсодержащего горючего газа от 0 до 100 об.% данные механизмы обеспечивают понижение сопротивления рабочего элемента. Включение датчика в мостовую схему обеспечивает независимость выходного сигнала датчика от температуры окружающей среды.

В таблицах 1-3 представлены зависимости выходного сигнала датчика от концентрации водородосодержащего газа (метан, водород, пропан) в диапазоне от 0 до 100 об.%

Таблица 1
Чувствительность к метану (CH4)
Концентрация анализируемого газа, об.% 00,5 11,5 23 510 2040 6080 100
Выходной сигнал датчика, мВ 08 1217 2128 3751 71129 182224 277

Таблица 2
Чувствительность к водороду (Н2)
Концентрация анализируемого газа, об.% 00,5 11,5 23 510 2040 6080 100
Выходной сигнал датчика, мВ 011 1521 2430 3958 79142 192238 296

Таблица 3
Чувствительность к пропану (С3Н8)
Концентрация анализируемого газа, об.%0 0,5 11,5 23 510 2040 6080 100
Выходной сигнал датчика, мВ 06 1013 1824 3144 65109 163213 259

Преимуществом заявляемой конструкции можно назвать простоту изготовления датчика, способность определения концентрации водородсодержащих горючих газов в бескислородной среде.

Класс G01N27/16 вызванного сгоранием или каталитическим окислением испытуемого материала, например газа, служащего средой для нагреваемого тела 

узел восстановления для масс-спектрометрического определения изотопного состава водорода воды и органических кислородосодержащих соединений -  патент 2477464 (10.03.2013)
способ изготовления чувствительного каталитического элемента термохимического датчика -  патент 2460064 (27.08.2012)
система изотопного хромато-масс-спектрометрического анализа органических газовых смесей -  патент 2383013 (27.02.2010)
способ измерения концентрации взрывоопасных газов -  патент 2339935 (27.11.2008)
способ определения концентрации каталитически окисляемого газа в воздухе -  патент 2279668 (10.07.2006)
способ измерения концентрации метана и/или водорода -  патент 2250455 (20.04.2005)
датчик непрерывного определения параметров газообразующей составляющей газовой смеси -  патент 2235994 (10.09.2004)
устройство для определения концентрации горючих газов в кислородосодержащей среде -  патент 2199113 (20.02.2003)
способ определения концентрации горючих газов в кислородосодержащей среде -  патент 2156972 (27.09.2000)
способ определения концентрации горючих газов в кислородосодержащей среде -  патент 2142624 (10.12.1999)
Наверх