способ получения циклогексана и его производных
Классы МПК: | C07C5/03 неароматических углерод-углеродных двойных связей C07C13/18 с циклогексановым кольцом C07D295/033 с атомами азота кольца, непосредственно связанными с карбоциклическими кольцами B01J23/755 никель B82B1/00 Наноструктуры B01J21/02 бор или алюминий; их оксиды или гидроксиды |
Автор(ы): | Попов Юрий Васильевич (RU), Мохов Владимир Михайлович (RU), Небыков Денис Николаевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU) |
Приоритеты: |
подача заявки:
2012-03-20 публикация патента:
27.06.2013 |
Изобретение относится к усовершенствованному способу получения циклогексана и его производных общей формулы
R=H, .
Способ позволяет получать
насыщенные углеводороды и их производные, которые находят применение как полупродукты в органическом синтезе. Способ заключается в гидрировании циклогексена или его производного, выбранного из 1-(N-пиперидино)пиклогексена-1, 1-(N-морфолино)циклогексена-1 или 1,4-дициклогекс-1-енилпиперазина, газообразным водородом при атмосферном давлении водорода в присутствии нанокатализатора в среде тетрагидрофурана при температуре 50-70°С в течение 5-6 часов с последующим выделением целевого продукта. В качестве нанокатализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) алюмогидридом лития in situ. Способ позволяет проводить процесс при атмосферном давлении с использованием катализатора, получаемого по более простой технологии, что приводит к упрощению способа в целом. Кроме того, способ может быть использован для получения более широкого круга соединений - производных циклогексана, содержащих гетероциклические группы. 4 пр.
Формула изобретения
Способ получения циклогексана и его производных общей формулы
где R=H,
с использованием гидрирования водородом в присутствии нанокатализатора с последующим выделением целевого продукта, отличающийся тем, что гидрированию подвергают циклогексен или его производные, выбранные из ряда: 1-(N-пиперидино)циклогексен-1, 1-(N-морфолино)циклогексен-1 или 1,4-дициклогекс-1-енилпиперазин, а в качестве нанокатализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) алюмогидридом лития in situ, и процесс проводят при атмосферном давлении водорода в среде тетрагидрофурана при температуре 50-70°С в течение 5-6 ч.
Описание изобретения к патенту
Изобретение относится к способу получения циклогексана и его производных, в частности к новому способу гидрирования циклических олефинов и их производных, который применим в условиях лаборатории и позволяет получать насыщенные углеводороды и их производные общей формулой
R=H,
которые находят применение как полупродукты в органическом синтезе.
Известен способ гидрирования олефинов из ряда: октен-1, гексен-1, гексен-2, стирол, циклогексен водородом при атмосферном давлении в присутствии специально приготовленного катализатора, при этом катализатор получают восстановлением диацетата никеля металлическим натрием, цинковой пылью, алюмогидридом лития или боргидридом натрия [ACTIVATION OF REDUCING AGENTS. SODIUM HYDRIDE CONTAINING COMPLEX REDUCING AGENTS. VII. NIC, A NEW HETEROGENEOUNS NI HYDROGENATION CATALYST / J.J.BRUNET, P.GALLOIS, P.CAUBERE // TETRAHEDRON LETTERS 1977, No. 45, pp.3955-3958]. Недостатком этого способа является стадия нейтрализации избытка пожароопасного восстановителя, приводящая к потерям достаточно дорогостоящих реагентов. Продукты реакции определялись методом газожидкостной хроматографии без выделения.
Известен способ гидрирования енаминов ряда 1-метил-5-арил-2,3-дигидропиррола водородом при атмосферном давлении на металлокомплексном иридиевом катализаторе [Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Enamines // Guo-Hua Hou, Jian-Hua Xie, Pu-Cha Yan, Qi-Lin Zhou // J. Am. Chem. Soc., 2009, 131 (4), pp. 1366-1367]. Недостатком метода является использование дорогостоящего иридиевого катализатора, данным способом не получены соединения заявляемой структурной формулы.
Наиболее близким аналогом предлагаемого изобретения является способ получения циклогексана и его производных при гетерогенно-каталитическом гидрировании циклогексена и его производных на наночастицах железа [At the frontier between heterogeneous and homogeneous catalysis: hydro-genation of olefins and alkynes with soluble iron nanoparticles / C.Rangheard, C. de Julian Fernandez, Pim-Huat Phua, J.Hoorn, L.Lefort, J.G. de Vries // Dalton Trans., 2010, 39, 8464-8471].
Недостатком данного метода является необходимость использования автоклава для создания необходимого давления водорода (20 атм). Также имеются определенные трудности с приготовлением раствора катализатора, который готовится под азотной подушкой в течение получаса.
Задачей заявляемого способа является разработка технологичного способа получения циклогексана и его производных гидрированием циклогексена и его производных газообразным водородом, не требующего использования дорогостоящих катализаторов и сложных технологических условий, который будет позволять достигать высоких значений выхода по исходным циклогексену или его производному в условиях химической лаборатории с использованием доступных реагентов. Техническим результатом является упрощение метода получения соединений заявляемой структурной формулы.
Поставленный результат достигается в новом способе получения циклогексана и его производных общей формулы
R=H,
с использованием гидрирования водородом в присутствии нанокатализатора с последующим выделением целевого продукта, отличающемся тем, что гидрированию подвергают циклогексен или его производные, выбранные из ряда: 1-(N-пиперидино)циклогексен-1, 1-(N-морфолино)циклогексен-1 или 1,4-дициклогекс-1-енилпиперазин, а в качестве нанокатализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) алюмогидридом лития in situ и процесс проводят при атмосферном давлении водорода в среде тетрагидрофурана при температуре 50-70°С в течение 5-6 часов.
Сущностью метода является реакция гидрирования циклогексена или его производного из ряда: 1-(N-пиперидино)циклогексен-1, 1-(N-морфолино)циклогексен-1 или 1,4-дициклогекс-1 -енилпиперазин газообразным водородом в среде тетрагидрофурана в присутствии наночастиц никеля.
В предлагаемом изобретении весь синтез проводится в одну стадию: получение катализатора и гидрирование протекают in-situ. Также достоинством предлагаемого изобретения является использование водорода при атмосферном давлении, что позволяет упростить и удешевить способ получения целевых продуктов.
Способ осуществляется следующим образом.
В плоскодонную колбу загружается алюмогидрид лития и безводные соли никеля или кобальта в мольном соотношении 1:2 по реакции
2NiCl2+LiAlH4 =2Ni0+LiCl+AlCl3+2H2
в качестве растворителя используется тетрагидрофуран. Количество алюмогидрида рассчитывается исходя из количества получаемого катализатора с незначительным избытком, и, следовательно, гидроалюминирования циклогексена или его производного не происходит. После получения черного, прозрачного в тонком слое коллоидного раствора металла загружается гидрируемый субстрат и через реакционную массу в течение 5-6 часов при температуре 50-70°С при атмосферном давлении барботируется газообразный водород, который предварительно пропускается через слой концентрированной серной кислоты для очистки от следов влаги. Катализатор в ходе реакции коагулирует, и образовываются агломераты частиц, которые затем могут быть отделены фильтрованием. При необходимости для коагуляции частиц катализатора в реакционную смесь добавляют несколько капель воды. Из фильтрата выделяют целевой продукт перегонкой при атмосферном давлении или в вакууме. Свойства синтезированных веществ соответствуют литературным данным.
Стабилизации коллоидных растворов наночастиц металлов не требуется, это значительно упрощает и удешевляет предлагаемый способ гидрирования. Так как и при синтезе катализатора, и восстановлении заявленных веществ используются одинаковые условия, весь процесс сводится к одностадийному синтезу, при котором катализатор образуется in-situ из хлорида никеля (II).
Изобретение иллюстрируется следующими примерами.
Пример 1.
Циклогексан
В плоскодонную колбу на магнитной мешалке, снабженную барботером и обратным холодильником, загружают суспензию 0.5 г (0,013 моль) алюмогидрида лития в 20 мл осушенного тетрагидрофурана, после чего постепенно присыпают 2.7 г (0,021 моль) безводного хлорида никеля (II), при этом образуется черный коллоидный раствор никеля. После этого добавляют 36,8 г (0,40 моль) циклогексена и включают барботаж водорода. Реакцию проводят при нагреве до 60°С в течение 6 часов. По окончании реакции смесь охлаждают, добавляют 10 мл воды, при этом коллоидный катализатор переходит в водный слой. Слои разделяют, органический слой подвергают фракционной перегонке при атмосферном давлении, получают 28 г (0,34 моль, 85%) циклогексана, бесцветную жидкость с характерным запахом, т.к. 80-82°С.
Пример 2.
N-Циклогексилпиперидин
В плоскодонную колбу на магнитной мешалке, снабженную барботером и обратным холодильником, загружают суспензию 0.5 г (0,013 моль) алюмогидрида лития в 20 мл осушенного тетрагидрофурана, после чего постепенно присыпают 2.7 г (0,021 моль) безводного хлорида никеля (II), при этом образуется черный коллоидный раствор никеля. После этого добавляют 35 г (0,21 моль) 1-(N-пиперидино)циклогексена-1 и включают барботаж водорода. Реакцию проводят при нагреве до 60°С в течение 6 часов. По окончании реакции смесь охлаждают, добавляют 10 мл воды, при этом коллоидный катализатор переходит в водный слой. Слои разделяют, из органического слоя отгоняют тетрагидрофуран. Остаток перегоняют при атмосферном давлении, получают 31,5 г (0,189 моль, 90%) N-циклогексилпиперидина, бесцветная жидкость, т.к. 235-240°С (по лит. данным т.к. 231-234°С [8]). Спектр ЯМР 1Н, , м.д.: 1.07-1.71 м (16Н, 8 CH2); 2.11 м (1Н, CHN); 2.36 т (4Н, CH2N).
Пример 3.
N-Циклогексилморфолин
В плоскодонную колбу на магнитной мешалке, снабженную барботером и обратным холодильником, загружают суспензию 0.5 г (0,0.13 моль) алюмогидрида лития в 20 мл осушенного тетрагидрофурана, после чего постепенно присыпают 2.7 г (0,021 моль) безводного хлорида никеля (II), при этом образуется черный коллоидный раствор никеля. После этого добавляют 35,1 г (0,21 моль) 1-(N-морфолино)циклогексена-1 и включают барботаж водорода. Реакцию проводят при нагреве до 50°С в течение 5 часов. По окончании реакции смесь охлаждают, добавляют 10 мл воды, при этом коллоидный катализатор переходит в водный слой. Слои разделяют, из органического слоя отгоняют тетрагидрофуран. Остаток перегоняют в вакууме водоструйного насоса, получают 30,5 г (0,181 моль, 86%) N-циклогексилморфолина, бесцветная жидкость, т.к. 141-142°С / 25 мм рт.рт. Спектр ЯМР 1Н, , м.д.: 1.03-1.75 м (10H, 5 CH2); 2.06 м (1H, CHN); 2.39 т (4Н, 2CH2N); 3.49 т (4Н, 2CH2 O).
Пример 4.
N,N-Дициклогексилпиперидин
В плоскодонную колбу на магнитной мешалке, снабженную барботером и обратным холодильником, загружают суспензию 0.5 г (0,013 моль) алюмогидрида лития в 20 мл осушенного тетрагидрофурана, после чего постепенно присыпают 2.7 г (0,021 моль) безводного хлорида никеля (II), при этом образуется черный коллоидный раствор никеля. После этого добавляют 25 г (0,10 моль) 1,4-дициклогекс-1-енилпиперазина и включают барботаж водорода. Реакцию проводят при нагреве до 70°С в течение 6 часов. По окончании реакции смесь охлаждают, добавляют 10 мл воды, при этом коллоидный катализатор переходит в водный слой. Слои разделяют, из органического слоя отгоняют тетрагидрофуран. Остаток перегоняют в вакууме водоструйного насоса, получают 21,3 г (0,085 моль, 85%) N,N-дициклогексилпиперидина, бесцветные кристаллы, т.к. 240-245°С / 20 мм рт.ст., т.пл. 98-100°С. Спектр ЯМР 1Н, , м.д.: 1.10-1.72 м (20Н, 10 CH2); 2.06 м (2Н, 2CHN); 2.39 т (8Н, 2 CH2N).
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:
- средство, воплощающее заявленное изобретение при его осуществлении предназначено для применения в лабораторных условиях;
- для заявленного изобретения в том виде, как оно охарактеризовано в независимом пункте нижеизложенной формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных до даты приоритета средств и методов;
- средство, воплощающее заявленное изобретение при его осуществлении способно обеспечить достижение технического результата.
Выводы
Разработан новый способ получения циклогексана или его производных гидрированием циклогексена или его производных газообразным водородом при атмосферном давлении в присутствии наночастиц никеля с последующим выделением продуктов, который протекает с высоким выходом по исходным веществам.
Класс C07C5/03 неароматических углерод-углеродных двойных связей
способ получения производных норборнана - патент 2504532 (20.01.2014) | |
способ получения алкилбензолов - патент 2495864 (20.10.2013) | |
способ получения линейных алканов - патент 2495863 (20.10.2013) | |
способ получения производных норборнана - патент 2487857 (20.07.2013) | |
способ получения алкилбензолов - патент 2479563 (20.04.2013) | |
способ получения линейных алканов - патент 2479562 (20.04.2013) | |
способ получения дициклопентена (трицикло-[5.2.1.02,6]децена-3) - патент 2459793 (27.08.2012) | |
способ получения производных норборнана - патент 2456262 (20.07.2012) | |
способ получения базового масла - патент 2427564 (27.08.2011) | |
смесь изоалканов, ее получение и применение - патент 2420504 (10.06.2011) |
Класс C07C13/18 с циклогексановым кольцом
Класс C07D295/033 с атомами азота кольца, непосредственно связанными с карбоциклическими кольцами
Класс B01J21/02 бор или алюминий; их оксиды или гидроксиды