факельная горелка
Классы МПК: | F23D14/20 горелки без предварительного смешивания, те в которых газообразное топливо смешивается с воздухом при поступлении в зону горения |
Автор(ы): | Гриценко Владимир Дмитриевич (RU), Лачугин Иван Георгиевич (RU), Орехов Евгений Александрович (RU), Черниченко Владимир Викторович (RU), Шевцов Александр Петрович (RU), Гречкин Андрей Александрович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью Финансово-промышленная компания "Космос-Нефть-Газ" (RU) |
Приоритеты: |
подача заявки:
2011-12-20 публикация патента:
27.06.2013 |
Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения. Изобретение позволяет создать горелку, конструкция которой позволяет обеспечить улучшенные условия смесеобразования и максимально возможную полноту сгорания газов с уменьшенным шумом и вибрациями при работе горелки. Факельная горелка содержит полый корпус в виде трубы, снабженной в выходной части рассекателем, размещенным с кольцевым зазором относительно верхнего торца корпуса. Внутри трубы установлено полое профилированное центральное тело, имеющее минимальное проходное сечение, расположенное в его выходной части. Полый корпус выполнен с коническим расширением в его выходной части. Выходной рассекатель выполнен в виде конуса, обращенного вершиной к входной части корпуса горелки. По оси рассекателя, параллельно или практически параллельно оси, выполнен сквозной канал, соединяющий полость под рассекателем с окружающей атмосферой. В кольцевом зазоре, предпочтительно, между выходной частью рассекателя и выходной конической частью корпуса, установлены дополнительные рассекатели, выполненные, преимущественно, в виде кронштейнов V-образного профиля, обращенных вершиной к входной части корпуса. В минимальном сечении входного профилированного центрального тела установлен с образованием кольцевого зазора дополнительный рассекатель, выполненный, преимущественно, в виде конуса, обращенного вершиной к входной части корпуса горелки. 7 ил.
Формула изобретения
Факельная горелка, содержащая полый корпус в виде трубы, снабженной в выходной части рассекателем, размещенным с кольцевым зазором относительно верхнего торца корпуса, при этом внутри трубы установлено полое профилированное центральное тело, имеющее минимальное проходное сечение, расположенное в его выходной части, отличающаяся тем, что полый корпус выполнен с коническим расширением в его выходной части, при этом выходной рассекатель выполнен в виде конуса, обращенного вершиной к входной части корпуса горелки, причем по оси рассекателя, параллельно или практически параллельно оси, выполнен сквозной канал, соединяющий полость под рассекателем с окружающей атмосферой, при этом в кольцевом зазоре, предпочтительно между выходной частью рассекателя и выходной конической частью корпуса, установлены дополнительные рассекатели, выполненные преимущественно в виде кронштейнов V-образного профиля, обращенных вершиной к входной части корпуса, а в минимальном сечении входного профилированного центрального тела установлен с образованием кольцевого зазора дополнительный рассекатель, выполненный преимущественно в виде конуса, обращенного вершиной к входной части корпуса горелки.
Описание изобретения к патенту
Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения.
Одной из проблем, возникающих при сжигании продувочных и попутных газов, особенно содержащих конденсат и сероводородные соединения, является обеспечение максимально возможной полноты сгорания газов, получение продуктов сгорания с минимальным содержанием сероводородных соединений, не превышающих предельно допустимые нормы и уменьшение шума при работе горелки.
Известна горелка, содержащая корпус с соосно установленной трубой, снабженной по периферии участка, выведенного за пределы корпуса, рассекателем в виде тела Коанда, размещенным с зазором относительно верхнего торца корпуса, при этом в трубе дополнительно установлена отсасывающая трубка, нижний конец которой выведен в корпус, и на участке трубы, размещенном в корпусе, выполнено уширение с отверстиями по его образующей, при этом отношение площади зазора к площади выходного сечения трубы составляет 0,75-1,3 (а.с. СССР № 643719 от 06.01.77. MKH F23D 13/20).
Недостатками известной горелки является неполное сгорание газа и конденсата, повышенное содержание вредных примесей в продуктах сгорания.
Известна горелка, содержащая корпус с соосно установленной трубой, снабженной по периферии участка, выведенного за пределы корпуса, рассекателем в виде тела Коанда, размещенным с зазором относительно верхнего торца корпуса, при этом в трубе дополнительно установлена отсасывающая трубка, нижний конец которой выведен в корпус, и на участке трубы, размещенном в корпусе, выполнено уширение с отверстиями по его образующей, при этом отношение площади зазора к площади выходного сечения трубы составляет 0,75-1,3, участок трубы, выведенный за пределы корпуса, выполнен в виде сопла Лаваля, а верхний торец отсасывающей трубки размещен на входе в указанное сопло (а.с. СССР № 937888 от 01.10.80, дополнительное к а.с. № 643719, МКИ F23D 13/20).
Указанная горелка работает следующим образом.
Сбрасываемый из скважины газ подается к трубе и разделяется на два потока. Первый поток газа поступает к соплу Лаваля, а второй поток - через отверстия трубы - в корпус горелки. При выходе из отверстий газ в начальный момент времени движется в направлении нижней части корпуса, а затем изменяет направление движения на противоположное и движется к боковому кольцевому зазору. При изменении направления движения газ отделяется от жидкой фазы (конденсата), которая собирается в нижней части корпуса. Очищенный поток газа, выходя из бокового кольцевого зазора, вследствие возникающего эффекта Коанда, прилипает к поверхности рассекателя и создает вокруг него зону пониженного давления, в которую вовлекается окружающий воздух. Воздух смешивается с поступающим газом и полученная газовоздушная смесь движется в направлении образующей конического участка рассекателя, к выходу первого потока газа.
Первый поток газа, выходя по трубе из сопла Лаваля, подсасывает из корпуса, при помощи отсасывающей трубки, конденсат. Поток конденсата, за счет повышенной скорости газа в узком сечении сопла Лаваля, дробится на мелкодисперсные капли, смешивается с первым потоком газа и вторым газовоздушным потоком. Полученная смесь газа, воздуха и конденсата бездымно сгорает.
Основным недостатком данной горелки является то, что газ, поступающий по центральной трубе, поступает к профилированному соплу с давлением, значительно больше атмосферного, и повышенной скоростью, дополнительно разгоняется в сопле, что приводит к образованию скачков уплотнения за рассекателем, повышенному шуму и вибрациям при работе горелки, ухудшению условий смесеобразования и увеличению длины факела. Это влечет за собой уменьшение полноты сгорания не до конца очищенных газов и увеличению содержания вредных выбросов, в частности сероводорода и его соединений, в продуктах сгорания.
Известна факельная горелка, содержащая корпус с соосно установленной трубой, снабженной по периферии участка, выведенного за пределы корпуса, рассекателем в виде тела Коанда, размещенным с зазором относительно верхнего торца корпуса, при этом участок трубы, выведенный за пределы корпуса, выполнен в виде сопла Лаваля, а внутри трубы установлены полые профилированные тела, каждое из которых имеет одно минимальное проходное сечение, расположенное в его выходной части, при этом число полых профилированных тел определено из соотношения n=Р вх/Рвых·k, где n - число полых профилированных тел; Рвх - давление на входе в трубу; Рвых - давление на выходе из трубы (атмосферное); k - коэффициент восстановления полного давления, равный 0,7-0,8 (патент РФ № 2315239, МПК: F23D 13/20 - прототип).
Указанная горелка работает следующим образом.
Сбрасываемый из скважины газ после входа в трубу разделяется на два потока.
Первый поток газа подается к соплу Лаваля, а второй поток - через отверстия в трубе - в кольцевой зазор между корпусом и трубой. Первый поток поднимается вверх по трубе, попадает в сужающуюся часть полого профилированного тела, сужается, проходит минимальное сечение и снова расширяется. За счет сжатия и последующего расширения газа происходит уменьшение давления газа на выходе из расширяющейся части, и в сужающуюся часть следующего профилированного тела газ поступает уже с меньшим давлением, чем в предыдущее, и, соответственно, меньшим, чем давление на входе в трубу. Таким образом, пройдя через несколько последовательно установленных профилированных тел и теряя на каждом из них давление за счет чередующихся процессов сжатия-расширения, газ поступает к профилированному соплу с заданным давлением, близким к атмосферному.
Первый поток газа, выходя по трубе из сопла Лаваля, подсасывает за счет разности скоростей, из кольцевой полости, образованной корпусом и трубой, при помощи всасывающей трубки, конденсат. За счет того, что оставшийся поток конденсата подается к выходной части сопла, обеспечивается его повышенная турбулентность и скорость на выходе из сопла и поток первоначально более эффективно дробится на мелкодисперсные капли, а затем перемешивается с первым потоком газа и вторым газовоздушным потоком. Полученная смесь газа, воздуха и конденсата бездымно сгорает, обеспечивая при сгорании пониженное содержание вредных примесей в продуктах сгорания.
Основным недостатком данной горелки является то, на рассекателе образуется значительная неравномерность в скорости потока, что приводит к образованию скачков уплотнения за рассекателем, повышенному шуму и вибрациям при работе горелки, ухудшению условий смесеобразования и увеличению длины факела. Это влечет за собой уменьшение полноты сгорания не до конца очищенных газов и увеличению содержания вредных выбросов, в частности сероводорода и его соединений, в продуктах сгорания.
Технической задачей предлагаемого изобретения является устранение указанных недостатков и создание горелки, конструкция которой позволяет обеспечить улучшенные условия смесеобразования и максимально возможную полноту сгорания газов с уменьшенным шумом и вибрациями при работе горелки.
Решение поставленной задачи достигается за счет того, что в предложенной факельной горелке, содержащей полый корпус в виде трубы, снабженной в выходной части рассекателем, размещенным с кольцевым зазором относительно верхнего торца корпуса, при этом внутри указанного корпуса установлено, как минимум, одно входное полое профилированное центральное тело, которое имеет одно минимальное проходное сечение, расположенное в его выходной части, согласно изобретению полый корпус выполнен с коническим расширением в его выходной части, при этом выходной рассекатель выполнен в виде конуса, обращенного вершиной к входной части корпуса горелки, причем по оси рассекателя, параллельно или практически параллельно оси факельной горелки, выполнен сквозной канал, соединяющий полость под рассекателем с окружающей атмосферой, при этом в кольцевом зазоре, предпочтительно, между выходной частью рассекателя и выходной конической частью корпуса, установлены дополнительные рассекатели, выполненные, преимущественно, в виде кронштейнов V-образного профиля, обращенных вершиной к входной части корпуса, а в минимальном сечении входного профилированного центрального тела установлен с образованием кольцевого зазора, дополнительный рассекатель, выполненный, преимущественно, в виде конуса, обращенного вершиной к входной части корпуса горелки.
Такая совокупность признаков позволяет получить новые свойства, заключающиеся в том, что, благодаря организации кольцевого течения внутри корпуса горелки, получают достаточно равномерный профиль скорости газа на выходе из факельной горелки, что, в свою очередь, приводит к снижению токсичности продуктов сгорания, снижению шума от факельной горелки и повышению стабильности воспламенения.
При использовании традиционных конструкций сжигание тяжелых углеводородов сопровождается дымообразованием за счет неполного сгорания, что, в свою очередь, является следствием малого содержания первичного воздуха перед фронтом пламени и малой поверхности контакта горючего газа с воздухом. Предлагаемая конструкция факельного оголовка, за счет принципа многоструйности, обеспечивает гораздо большую поверхность контакта и лучшее смешение с воздухом перед фронтом горения.
Таким образом, совокупность существенных признаков заявляемого технического решения, благодаря наличию новых признаков, обеспечивает получение технического результата, выражающегося в улучшении условий смесеобразования, значительном снижении уровня шума, возникающего при работе горелки и уменьшении длины факела, получении повышенной полноты сгорания газовоздушной смеси за счет улучшения условий смесеобразования и возможности унификации горелок.
Указанные существенные признаки в совокупности, характеризующей сущность заявляемого технического решения, не известны в настоящее время для горелок и устройств для сжигания топлива. Аналог, характеризующийся идентичностью всем существенным признакам заявляемого изобретения, в ходе исследований не обнаружен, что позволяет сделать вывод о соответствии заявляемого технического решения критерию «Новизна».
Существенные признаки заявляемого изобретения не могут быть представлены как комбинация, выявленная из известных решений с реализацией в виде отличительных признаков для достижения технического результата, из чего следует вывод о соответствии критерию «Изобретательский уровень».
В связи с тем, что представленное техническое решение предназначено для использования в рамках реальной системы дожигания газов и подготовлено заявителем для внедрения в производство, предлагаемое изобретение соответствует критерию «Промышленная применимость».
Сущность изобретения иллюстрируется чертежами, где на фиг.1 показана предложенная факельная горелка в аксонометрии, на фиг.2 показан осевой разрез предложенной факельной горелки, на фиг.3 - вид сверху на предложенную факельную горелку, на фиг.4 - поперечный разрез А-А по уровню входного рассекателя, на фиг.5 - продольный разрез на уровне выходного рассекателя, на фиг.6 - распределение поля скоростей для обычной горелки, на фиг.7 - распределение поля скоростей для предложенной горелки.
Факельная горелка содержит полый корпус 1 в виде трубы, в верхней части которой установлен выходной рассекатель 2, размещенный с кольцевым зазором 3 относительно верхнего торца корпуса. Полый корпус 1 выполнен с коническим расширением 4 в его выходной части. Выходной рассекатель 2 выполнен в виде конуса, обращенного вершиной к входной части корпуса 1 горелки. По оси рассекателя 2, параллельно или практически параллельно оси факельной горелки, выполнен сквозной канал 5, соединяющий полость под рассекателем с окружающей атмосферой. В кольцевом зазоре 3, между выходной частью рассекателя 2 и выходной конической частью 4 корпуса 1, установлены дополнительные рассекатели 6, выполненные, преимущественно, в виде кронштейнов V-образного профиля, обращенных вершиной к входной части корпуса 1. Между дополнительными рассекателями 6 и выходным рассекателем 2 выполнен кольцевой зазор 7.
Внутри корпуса 1, во входной его части, установлено, как минимум, одно входное полое профилированное центральное тело 8, которое имеет одно минимальное проходное сечение 9, расположенное в его выходной части. В минимальном сечении входного профилированного центрального тела 8 установлен с образованием кольцевого зазора 10, дополнительный рассекатель 11, выполненный, преимущественно, в виде конуса, обращенного вершиной к входной части корпуса 1 горелки.
Предложенная факельная горелка работает следующим образом.
Поток газа подается на вход в корпус 1 горелки. Газ проходит через кольцевой зазор 10, образованный входным полым профилированным центральным телом 8 и дополнительным рассекателем 11, установленным в минимальном проходном сечении 9, при этом, за счет увеличения скорости газа, происходит «запирание» минимального сечения факела и предотвращается попадание воздуха внутрь корпуса 1.
Далее газ проходит через коническое расширение 4, выполненное в форме конфузора, который формирует форму потока и снижает градиент скоростей в поперечном сечении.
После конического расширения поток газа разделяется на три части. Первая часть потока газа проходит в треугольные щели, образованные выходными треугольными рассекателями 6 и выходной частью рассекателя 2, при этом газ интенсивно смешивается с окружающим воздухом за счет большей площади контакта, по сравнению с традиционными конструкциями.
Вторая часть потока газа проходит в кольцевую щель, образованную дополнительными рассекателями 6 и выходным рассекателем 2. На выходе, благодаря указанным рассекателям 6, происходит формирование трапециевидной формы потока с большой площадью контакта с окружающей средой, при этом средний потока газа так же интенсивно смешивается с воздухом, который подходит к указанному потоку в промежутках между треугольными внешними потоками.
Третья часть потока газа подается в центральное отверстие 5 в выходном конусном рассекателе 2, что позволяет снизить температурные нагрузки на конусный рассекатель 2.
Данную конструкцию факельного оголовка наиболее целесообразно применяться на факельных установках, в сбросе которых в значительном количестве присутствуют тяжелые углеводороды (С 4-С10). При этом за счет хорошего предварительного смешения газа с воздухом, для обеспечения бездымной работы, не требуется подача пара или сжатого воздуха. При наличии в составе сброса ароматических, непредельных, диеновых углеводородов фенольного ряда, рекомендуется подавать пар в центральное отверстие 5 в конусном рассекателе 2.
Проведенные авторами и заявителем испытания полноразмерной факельной горелки полностью подтвердили правильность заложенных конструкторско-технологических решений.
Использование предложенного технического решения позволит более эффективно организовать процесс подготовки смеси перед сгоранием, уменьшить длину факела и шум при работе горелки, повысить полноту сгорания конденсатосодержащих газов и уменьшить содержание вредных примесей в продуктах сгорания за счет улучшения условий сгорания газовоздушной смеси.
Класс F23D14/20 горелки без предварительного смешивания, те в которых газообразное топливо смешивается с воздухом при поступлении в зону горения