способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений
Классы МПК: | C10G3/00 Получение жидких углеводородных смесей из кислородсодержащих органических веществ, например из жирных масел, жирных кислот C10L5/40 на основе веществ неминерального происхождения C11C3/04 этерификацией жиров или жирных масел C02F1/00 Обработка воды, промышленных или бытовых сточных вод |
Автор(ы): | Гладышев Михаил Иванович (RU), Кучкина Анна Юрьевна (RU), Сущик Надежда Николаевна (RU) |
Патентообладатель(и): | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" (RU), Учреждение Российской академии наук Институт биофизики Сибирского отделения РАН (RU) |
Приоритеты: |
подача заявки:
2011-11-24 публикация патента:
20.07.2013 |
Изобретение относится к способу получения биодизельного топлива из илов и/или осадков очистных сооружений, включающему предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидной фракции, разделение полученных фракций и осушение биодизеля. Дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта, соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4, затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4. Технический результат - получение биодизеля дешевым и простым способом за счет переработки илов и/или осадков очистных сооружений. 1 табл., 2 пр.
Формула изобретения
Способ получения биодизельного топлива из илов и/или осадков очистных сооружений, включающий предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидной фракции, разделение полученных фракций и осушение биодизеля, отличающийся тем, что в качестве сырья используют илы водоемов и/или осадки очистных сооружений, дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол 2:1 по объему, с последующей промывкой экстракта раствором KCl (0,88%) и после расслоения и удаления верхней фазы смесью 0,88%-ного раствора KCl-метанол 1:1 по объему раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4, затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1 по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2 SO4.
Описание изобретения к патенту
Изобретение относится к способу получения биодизельного топлива из илов эвтрофных водоемов и/или первичных осадков канализационных очистных сооружений, путем реакции переэтерификации липидной фракции со спиртом в присутствии катализатора.
В настоящее время, основной способ утилизации осадков сточных вод и донных осадков (илов) заключается в механическом обезвоживании и складировании обезвоженных осадков на иловых картах, где в течение длительного времени протекает их биодеградация. Данный способ утилизации илов и осадков сточных вод приводит к длительному и, как правило, безвозвратному отчуждению значительных земельных ресурсов и не отвечает современным экологическим требованиям.
Известна технология круглогодичной переработки загрязнений сточных вод, ила и других отходов с самодостаточным для автономной работы очистного сооружения производством электро- и тепловой энергии, которое обеспечивается биогазом-метаном, выработанным при взаимодействии биомассы ВВР Эйхорния со сточными водами [патент РФ № 95567, МПК В09В 3/00, опубл. 10.07.2010 г.]. Однако вышеуказанный комплекс позволяет получать только один ценный продукт, а именно биогаз-метан, который используется для обеспечения автономной работы очистного сооружения.
Известно устройство для получения углеводородов из бытового мусора и/или органических отходов, включая экскременты человека или животных [патент РФ № 2202589, МПК C10G 1/10, опубл. 20.04.2003]. Согласно изобретению способ включает две стадии крекинга, которые протекают при температуре 350-600°С и 600-1200°С, соответственно, т.е. требуют значительных энергетических затрат.
Известен способ и устройство переработки бытовых отходов и промышленных органических отходов [патент РФ № 2392543, МПК F23G 5/027, опубл. 20.06.2010], состоящий из двух стадий пиролиза (низкотемпературной и высокотемпературной), разделения продуктов пиролиза на фракции и переработки каждой фракции с получением полезных продуктов. Данный способ имеет достаточно высокую производительность и позволяет получать газообразное, жидкое и твердое топливо. Однако, на проведение процесса пиролиза и разделения продуктов реакции на фракции требуются значительные энергетические затраты, поэтому экономический эффект в данном случае не является очевидным.
Наиболее близким по технической сущности и достигаемому результату к заявляемой группе изобретений является способ получения биодизельного топлива из микроводорослей [Demirbas A., 2009. Production of Biodiesel from Algae Oils. Energy Sources, 31, Part A, 163-168]. Способ получения биодизеля из микроводорослей включает в себя: производство исходного сырья, измельчение, экстракцию липидной фракции гексаном, переэтерификацию выделенных липидов. Свойства биодизеля, полученного по этой технологии, в основном, удовлетворяют требованиям европейских стандартов по биодизелыюму топливу EN 14214, EN 14213.
Однако, существенным недостатком данной технологии является высокая стоимость исходного сырья - биомассы микроводорослей, которую, как правило, выращивают в специализированных биореакторах и затраты па культивирование биомассы значительно повышают стоимость биодизеля.
Техническим результатом изобретения является снижение стоимости биодизельного топлива, которое достигается за счет использования в качестве исходного сырья илов водоемов и/или первичных осадков канализационных очистных сооружений, не требующих затрат на их производство и решение проблемы утилизации осадков канализационных сооружений и/или водоемов.
Технический результат достигается тем, что в способе получения биодизельного топлива из илов и/или осадков очистных сооружений, включающем предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидпой фракции, разделение полученных фракций и осушение биодизеля, новым является то, что в качестве сырья используют илы водоемов и/или осадки очистных сооружений, дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта, соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2 SO4 затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4.
Заявляемый способ получения биодизельного топлива из плов водоемов и/или осадков очистных сооружений, отличается от прототипа тем, что применяется беззатратное сырье, дезинтеграцию сырья осуществляют механическим способом, экстракцию липидов осуществляют по методу Фолча, включающем экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), готовый экстракт липидов осушают, пропуская через слой безводного Na2 SO4 затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где соотношение метанола и катализатора в смеси составляет 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO 4, все это позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна».
Признаки отличающий заявляемое техническое решение от прототипа не выявлены в других технических решениях при изучении данных и смежных областей техники, а все вместе отличительные признаки заявляемого технического решения позволяют получить биодизельное топливо, состав которого удовлетворяет требованиям европейских стандартов по биодизельному топливу (EN 14214, EN 14213) и тем самым обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».
Способ переработки илов водоемов и/или первичных осадков канализационных очистных сооружений включает в себя следующие этапы: предварительную подготовку сырья, экстракцию липидной фракции, осушение полученного экстракта, реакцию переэтерификации сложных липидов, выделенных из осадков экстрагированием, которая протекает при температуре 85°С. В результате реакции образуются два ценных продукта - метиловые эфиры жирных кислот (биодизелыюе топливо) и глицерин. Разделение продуктов реакции переэтерификации осуществляют отстаиванием, либо экстрагированием биодизеля из реакционной смеси гексаном и осушение биодизеля.
Способ переработки осадков реализуется следующим образом.
Илы и/или первичные осадки канализационных очистных сооружений подвергают предварительной обработке. Она включает в себя: подсушивание, измельчение, механическое перетирание для разрушения клеток и клеточных остатков.
Далее осуществляют извлечение (экстракцию) из подготовленного сырья липидной фракции по методу Фолча, который включает в себя экстракцию липидов из подготовленного сырья смесью хлороформ: метанол (2:1 по объему) с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему). Промывание экстракта указанными растворами необходимо для удаления из экстракта ряда веществ нелипидной природы (Сахаров, аминокислот и т.д.), которые, как правило, всегда экстрагируются (наряду с липидами) смесями растворителей, содержащих спирт (в нашем случае метанол). Для этого к обработанному сырью добавляют метанол (в соотношении 3 мл/г), стеклянные бусы, и гомогенизируют механически в течение 10 мин. Затем добавляют двойной объем хлороформа (6 мл) и продолжают гомогенизацию в течение 5-10 мин. Экстракт сливают, к оставшемуся осадку приливают 5 мл смеси хлороформ-метанол (2:1, по объему) и повторяют гомогенизацию. Полученные экстракты переносят в мерный цилиндр. К экстракту добавляют 0.88% раствор KCl, из расчета ¼ часть от полученного объема экстракта, после расслоения убирают верхнюю фазу. Экстракт промывают повторно смесью 0.88% раствора KCl-метанол (1:1, по объему) из расчета ¼ часть от оставшегося объема экстракта. Готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4 и собирают в колбу. Растворители упаривают на роторном вакуумном испарителе при температуре 37°С.
Проводят метанолиз липидного экстракта (реакция переэтерификации): к сухому экстракту добавляют молярный избыток (соотношение липиды/смесь 1:2, по объему) смеси метанола и концентрированной H2 SO4 (50:1, по объему), в присутствии бензола при температуре 85°С, в течение двух часов. По окончании реакции в колбу добавляют двойной объем воды, и метиловые эфиры жирных кислот трижды экстрагируют из реакционной смеси гексаном. Гексановый экстракт дважды промывают дистиллированной водой и осушают, пропуская через слой безводного Na2SO4. Гексан отгоняют на роторном вакуумном испарителе.
Контроль качества биодизельного топлива проводят на газовом хроматографе с масс-спектрометрическим детектором с колонкой HP-FFAP. Условия анализа следующие: несущий газ - гелий, ввод без деления потока, капиллярная колонка НР-FFAP длиной 30 м и внутренним диаметром 0.25 мм. Применяют следующий температурный режим: подъем от 100 до 190°С со скоростью 3°С/мин, затем 5 мин изотермально, второй подъем температуры от 190 до 230°С со скоростью 10°С/мин и 20 мин изотермально; температура ввода - 250°С, интерфейса - 280°С; энергия ионизации детектора - 70 эВ, сканирование в диапазоне 45-450 атомных единиц.
Расчет эксплуатационных характеристик биодизельного топлива (цетановое число, йодное число, теплотворная способность) проводят на основании полученных результатов о составе и содержании жирных кислот в липидной фракции осадков по следующим формулам:
1. Цетановое число
Цетановые числа (СМ) метиловых эфиров жирных кислот рассчитывают по уравнению
где db - число двойных связей в молекуле; n - число атомов углерода в молекуле.
Цетановое число биодизеля рассчитывают как сумму цетановых чисел метиловых эфиров ЖК с учетом их процентного содержания в пробе.
2. Йодное число
Йодные числа (IN) метиловых эфиров жирных кислот рассчитывают по уравнению:
где db - число двойных связей в молекуле; WFAME - молекулярная масса эфира жирной кислоты; W 12 - молекулярная масса йода.
Йодное число биодизеля рассчитывают как сумму йодных чисел метиловых эфиров ЖК с учетом их процентного содержания в пробе.
3. Теплотворная способность
Теплотворную способность (Q, кал) метиловых эфиров жирных кислот рассчитывают по уравнению:
где С - содержание углерода, %; Н - содержание водорода, %; О - содержание кислорода, %; S - содержание серы, %; W - содержание влаги, % (стремится к нулю). Теплотворную способность биодизеля, рассчитывают как сумму теплот сгорания метиловых эфиров ЖК с учетом их процентного содержания в пробе.
Пример 1
Проводилась переработка илов малого водохранилища Бугач, расположенного в окрестностях г.Красноярска, в объеме 20 г, имеющих влажность 72%.
Экстракция липидной фракции осуществлялась из сырой массы илов по методу Фолча.
Получение биодизельного топлива проводили по реакции переэтерификации при температуре 85°С в течение 2 часов. В качестве катализатора реакции использовали концентрированную серную кислоту. Катализатор смешивали с метанолом (1:50 по объему). Смесь метанол/катализатор добавляли к липидам в объемном соотношении 2:1.
Разделение продуктов реакции (биодизеля и глицерина) осуществляли экстрагированием биодизеля из реакционной смеси гексаном. Извлечение глицерина не проводили.
Контроль качества биодизельного топлива проводили на газовом хроматографе с масс-спектрометрическим детектором (модель 6890/5975С, "Agilent Technologies", США) с колонкой HP-FFAP.
В результате переработки было получено биодизельное топливо (0.5 г) и глицерин. Эксплуатационные характеристики биодизеля (цетановое число, йодное число, теплотворная способность) удовлетворяют требованиям европейских стандартов по биодизельному топливу EN 14214, EN 14213 (табл.1).
Пример 2
Проводилась переработка первичных осадков канализационных очистных сооружений левобережья г.Красноярска, в объеме 3 кг, имеющих влажность 95%.
Экстракция липидной фракции осуществлялась из сырой массы первичных осадков по методу Фолча.
Получение биодизельного топлива проводили по реакции переэтерификации при температуре 85°С в течение 2 часов. В качестве катализатора реакции использовали концентрированную серную кислоту. Катализатор смешивали с метанолом (1:50 по объему). Смесь метанол/катализатор добавляли к липидам в объемном соотношении 2:1.
Разделение продуктов реакции (биодизеля и глицерина) осуществляли экстрагированием биодизеля из реакционной смеси гексаном. Извлечение глицерина не проводили.
Контроль качества биодизельного топлива проводили на газовом хроматографе с масс-спектрометрическим детектором (модель 6890/5975С, "Agilent Technologies", США) с колонкой HP-FFAP.
В результате переработки было получено биодизельное топливо (16.5 г) и глицерин. Эксплуатационные характеристики биодизеля (цетановое число, йодное число, теплотворная способность) удовлетворяют требованиям европейских стандартов по биодизельному топливу EN 14214, EN 14213 (табл.1).
Преимущества заявляемого способа получения биодизельного топлива из илов и/или осадков очистных сооружений заключаются в следующем:
- применяется беззатратное сырье;
- для экстракции применяется двухкомпонентная смесь, позволяющая более полно извлекать липиды из сырья;
- в реакции переэтерификации в качестве катализатора используется кислота, что исключает возможность образования побочных продуктов реакции (мыльных компонентов);
- осушение конечного продукта осуществляется с помощью высокоэффективного поглотителя влаги.
Таблица 1 | |||
Сравнение свойств биодизеля, полученного из илов водоема и первичных осадков канализационных очистных сооружений с требованиями европейских стандартов для биодизельного топлива. | |||
Характеристика | Илы | Первичные осадки | Стандарт |
Цетановое число | 80.6 | 76.6 | min 51 1 |
Йодное число | 41.4 | 40.7 | max 1201 |
Теплотворная способность (MJ/kg) | 37.4 | 37.4 | min 352 |
1 Европейский стандарт по биодизельному топливу EN 14214 | |||
2 Европейский стандарт по биодизельному топливу EN 14213 |
Класс C10G3/00 Получение жидких углеводородных смесей из кислородсодержащих органических веществ, например из жирных масел, жирных кислот
Класс C10L5/40 на основе веществ неминерального происхождения
Класс C11C3/04 этерификацией жиров или жирных масел
Класс C02F1/00 Обработка воды, промышленных или бытовых сточных вод