система поддержания оптимального теплового режима двигателя внутреннего сгорания
Классы МПК: | F02N19/00 Вспомогательные средства для запуска двигателей внутреннего сгорания, не отнесенные к предыдущим группам |
Автор(ы): | Кузнецов Александр Вадимович (RU), Селиванов Николай Иванович (RU), Зыков Сергей Александрович (RU), Шестов Алексей Михайлович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Красноярский государственный аграрный университет" (RU) |
Приоритеты: |
подача заявки:
2012-03-26 публикация патента:
20.07.2013 |
Изобретение относится к области транспортного машиностроения, а именно к двигателестроению и, в частности, к системам жидкостного охлаждения двигателей внутреннего сгорания со средствами для предпускового подогрева охлаждающей жидкости, а также аккумулирования тепла из отработавших газов в условиях низких температур при стабилизации оптимального теплового режима во всем диапазоне работы. Система поддержания оптимального теплового режима двигателя внутреннего сгорания дополнительно оборудована тепловым насосом, испаритель-теплообменник которого подключен к газовыпускному трубопроводу на выходе теплообменника-утилизатора тепловой энергии отработавших газов, а контур его теплового насоса соединен гидролиниями с дросселем и входом в компрессор, конденсатор-теплообменник теплового насоса подключен в контур подогрева системы охлаждения между теплообменником-утилизатором тепловой энергии отработавших газов и тепловым аккумулятором фазового перехода, а контур его теплового насоса соединен гидролиниями с выходом компрессора и дросселем. Изобретение обеспечивает повышение эффективности системы охлаждения транспортного средства за счет более полного использования тепловой энергии отработавших газов ЛВС. 1 ил.
Формула изобретения
Система поддержания оптимального теплового режима двигателя внутреннего сгорания, содержащая двигатель внутреннего сгорания, тепловой аккумулятор фазового перехода, радиатор-отопитель салона, автономный электронасос, запорную арматуру, расширительный бак и теплообменник-утилизатор тепловой энергии отработавших газов, отличающаяся тем, что она дополнительно оборудована тепловым насосом, испаритель-теплообменник которого подключен к газовыпускному трубопроводу на выходе теплообменника-утилизатора тепловой энергии отработавших газов, а контур его теплового насоса соединен гидролиниями с дросселем и входом в компрессор, конденсатор-теплообменник теплового насоса подключен в контур подогрева системы охлаждения между теплообменником-утилизатором тепловой энергии отработавших газов и тепловым аккумулятором фазового перехода, а контур его теплового насоса соединен гидролиниями с выходом компрессора и дросселем.
Описание изобретения к патенту
Изобретение относится к области транспортного машиностроения, а именно к двигателестроению и, в частности, к системам жидкостного охлаждения двигателей внутреннего сгорания со средствами для предпускового подогрева охлаждающей жидкости, а также аккумулирования тепла из отработавших газов в условиях низких температур при стабилизации оптимального теплового режима во всем диапазоне работы.
Известно, что двигатель внутреннего сгорания (ДВС) имеет небольшой диапазон изменения оптимальной температуры охлаждающей жидкости от 85°С (номинальный режим) до 100°С (частичные нагрузки) [Двигатели внутреннего сгорания. Кн.2. Динамика и конструирование / Под ред. В.Н.Луканина и М.Г.Шатрова. - 2-е изд. - М.: Высш. шк., 2005, с.301].
Известно, что с помощью различного рода холодильников, кондиционеров и тепловых насосов (обратные циклы тепловых машин), теплота может отниматься от холодных тел и передаваться телам с более высокой температурой [Теплотехника: Учеб. Для вузов / В.Н.Луканин, М.Г.Шатров, Г.М.Камфер и др.; Под. ред. В.Н.Луканина. - 2-е изд., перераб. - М.: Высш. шк., 2000. - C.195 206].
На большинстве современных транспортных средств система охлаждения ДВС и система отопления салона конструктивно выполняются в виде единого циркуляционного контура, благодаря чему отопление салона осуществляется за счет тепловой энергии жидкого теплоносителя, нагреваемого в зарубашечном пространстве ДВС. Ввиду того, что на отопление расходуется значительное количество тепловой энергии, температура теплоносителя (охлаждающей жидкости) в системе охлаждения двигателя в условиях зимней эксплуатации значительно ниже того значения, которое рекомендуется заводом-изготовителем. Например, согласно проведенным исследованиям [Исследование предпусковой тепловой подготовки двигателей городских автобусов в зимний период эксплуатации, разработка и испытание системы предпускового разогрева двигателя автобуса с тепловым аккумулятором фазового перехода: Отчет о НИОКР ( № 50517 - ЛД, промежут. по этапу № 2 / В.В.Шульгин, Г.И.Никифоров, С.Д.Гулин и др. - СПб.: ВИГУ, 2001, 39 с.] температура охлаждающей жидкости в системе охлаждения автобуса ЛиАЗ-5256, оборудованного дизелем КамАЗ-7408, при температуре окружающего воздуха tокр=-15 0°С составляла tж=45 58°C, а в соответствии с требованиями [Автобус ЛиАЗ-5256: Руководство по эксплуатации / Ликинский автобусный завод - М.: Транспорт, 1991, 224. с.] рабочая температура жидкости в системе охлаждения двигателя должна быть равна tраб=80 98°С.
Известны системы охлаждения двигателей внутреннего сгорания, эксплуатирующихся значительную часть времени на режиме холостого хода при низких температурах окружающей среды [авт.св. N 756056, кл. F01P 3/20, 1980].
Недостатком указанных устройств является то, что аккумулирование тепла в теплоаккумуляторе предусматривается путем отбора теплоты из охлаждающей жидкости двигателя, что в условиях низких температур окружающего воздуха и продолжительной работы на неполной нагрузке является весьма проблематичным.
Известна система поддержания оптимального теплового режима двигателя внутреннего сгорания, содержащая контур циркуляции охлаждающей жидкости, включающий рубашку охлаждения двигателя, циркуляционный насос с приводом, радиатор и датчик температуры охлаждающей жидкости, вентилятор обдува радиатора и аккумулятор тепла, снабженный резервуаром с теплоаккумулирующим веществом и каналами для прохода охлаждающей жидкости, масла и отработавших газов [Пат. 2134804 РФ, F01P 3/20, F02N 17/02. Опубл. 20.08.1999], а также система подогрева городского автобуса, состоящая из двигателя внутреннего сгорания, теплового аккумулятора фазового перехода (ТАФП), радиаторов-отопителей салона, автономного электронасоса, запорной арматуры, расширительного бака, теплообменника-утилизатора тепловой энергии отработавших газов, объединенных жидкостными трубопроводами [Пат. 2230929 РФ, F02N 17/00, В60Н 1/04. Опубл. 20.06.2004, прототип].
Общим недостатком известных систем является недостаточно полное использование теплоты, отводимой от двигателя внутреннего сгорания отработавшими газами для подогрева охлаждающей жидкости из-за невысокого температурного напора между ними.
Технический результат изобретения - повышение эффективности системы охлаждения транспортного средства сводится к более полному использованию тепловой энергии отработавших газов ДВС, что позволяет сократить продолжительность прогрева и обеспечить оптимальный диапазон температуры теплоносителя при низких отрицательных температурах окружающей среды.
Указанный технический результат достигается тем, что в отличие от прототипа система поддержания оптимального теплового режима двигателя внутреннего сгорания, содержит двигатель внутреннего сгорания, тепловой аккумулятор фазового перехода, радиатор-отопитель салона, автономный электронасос, запорную арматуру, расширительный бак и теплообменник-утилизатор тепловой энергии отработавших газов, притом она дополнительно оборудована тепловым насосом, испаритель-теплообменник которого подключен к газовыпускному трубопроводу на выходе теплообменника-утилизатора тепловой энергии отработавших газов, а контур его теплового насоса соединен гидролиниями с дросселем и входом в компрессор, конденсатор-теплообменник теплового насоса подключен в контур подогрева системы охлаждения, между теплообменником-утилизатором тепловой энергии отработавших газов и тепловым аккумулятором фазового перехода, а контур его теплового насоса соединен гидролиниями с выходом компрессора и дросселем.
На фиг.1 представлена система поддержания оптимального теплового режима двигателя внутреннего сгорания.
Система состоит из ДВС 1 с датчиком температуры 2, оборудованного штатными клапаном-термостатом 13, жидкостным радиатором 8 и жидкостным насосом 3, соединенными между собой трубопроводами 7, 14, 16, газовыпускным трубопроводом 21 и глушителем шума выпуска 24. Параллельно жидкостному радиатору 8 через тройник 18 и трехходовой кран 4 подключены два циркуляционных контура охлаждающей жидкости - контур отопления салона и контур подогрева ДВС 1. Первый контур состоит из трубопровода 10 и одноходового крана 11, радиатора-отопителя салона 9, трубопровода 6 и сливного крана 5, а второй контур - из электронасоса 20, теплообменника-утилизатора тепловой энергии отработавших газов 22, конденсатора-теплообменника 30, ТАФП 33 соединенных между собой трубопроводами 19, 27, 34. В газовыпускном трубопроводе 21 на выходе теплообменника-утилизатора 22 смонтирован теплообменник-испаритель 23 и глушитель шума 24. Контур теплового насоса состоит из последовательно соединенных гидролиниями 32, 29, 26, 25, компрессора 31, конденсатора-теплообменника 30, дросселя 28 и испарителя-теплообменника 23. Расширительный бак 17 с помощью компенсационного трубопровода 15 соединен с всасывающим патрубком жидкостного насоса 3, а с помощью дренажного трубопровода 12 - с жидкостным радиатором 8.
Система работает следующим образом.
Во время работы двигателя внутреннего сгорания охлаждающая жидкость, выходящая из ДВС 1, поступает в трубопровод 16 под действием жидкостного насоса 3 и делится на три части. При этом часть потока поступает в штатный клапан-термостат 13, другая часть через тройник 18 и одноходовой, кран 11 - в контур отопления салона и третья часть через тройник 18 - в контур подогрева ДВС 1. Температура начала открытия штатного клапана-термостата составляет (80±2)°С, полное его открытие достигается при (93±2)°С. Поэтому при прогреве ДВС 1 до оптимальной температуры охлаждающая жидкость поступает в трубопровод 14, минуя радиатор 8. В контуре отопления салона охлаждающая жидкость через одноходовой кран 11 по трубопроводу 10 проходит через радиатор-отопитель салона 9, отдавая часть тепловой энергии для отопления салона. Затем по трубопроводу 6 охлаждающая жидкость возвращается в систему охлаждения. В контуре подогрева ДВС 1 охлаждающая жидкость движется через тройник 18 по трубопроводу 19, затем по жидкостному тракту теплообменника-утилизатора отработавших газов 22 и конденсатора-теплообменника 30, в которых она нагревается. Далее поток охлаждающей жидкости поступает в ТАФП 33, где отдает часть своей тепловой энергии. При этом теплоаккумулирующий материал (ТАМ), находящийся в ТАФП, нагревается в твердой фазе до температуры плавления Тпл, плавится при этой температуре и далее нагревается в жидкой фазе до некоторой температуры, при которой достигается тепловое равновесие между потоком охлаждающей жидкости и ТАМом. Из ТАФП 33 охлаждающая жидкость возвращается в систему охлаждения по трубопроводу 34. После того как ТАФП 33 полностью накопил тепловую энергию, циркуляция охлаждающей жидкости через теплообменник-утилизатор отработавших газов 22, конденсатор-теплообменник 30 и ТАФП 33 не прекращается в этом случае обеспечивается оптимальный тепловой режим ДВС 1 и салона при низких отрицательных температурах окружающей среды.
В случае повышения температуры охлаждающей жидкости выше оптимальной, открывается штатный клапан-термостат 13, и теплота отводится радиатором 8 в окружающую среду.
Датчик температуры 2, имеющий электрическую связь с муфтой включения компрессора 31 теплового насоса, управляет его работой таким образом, что при температуре охлаждающей жидкости в двигателе ниже оптимальной компрессор включается, а при достижении нижнего уровня оптимального диапазона температуры выключается.
Нагревание охлаждающей жидкости в конденсаторе-теплообменнике 30 осуществляется за счет утилизации тепловой энергии отработавших газов в испарителе-теплообменнике 23, при этом используется теплота отработавших газов (в интервале от температуры охлаждающей жидкости на выходе из теплообменника-утилизатора до температуры окружающей среды), которую невозможно передать рекуперативным теплообмейником более нагретой охлаждающей жидкости.
В процессе хранения тепловой энергии во время стоянки транспортного средства трехходовой кран 4 и одноходовой кран 11 закрываются. При этом ТАМ сохраняется в расплавленном состоянии благодаря наличию в ТАФП 33 высокоэффективной теплоизоляции.
Для подогрева ДВС 1 после стоянки, трехходовой кран 4 устанавливается в такое положение, при котором контур подогрева ДВС 1 открыт для движения охлаждающей жидкости из ТАФП 33, а контур отопления салона - закрыт. При включении автономного электронасоса 20 охлаждающая жидкость поступает в трубопроводы 19 и 27. Далее поток охлаждающей жидкости проходит через ТАФП 33 и нагревается в нем за счет выделения ТАМом скрытой теплоты кристаллизации. При этом ТАМ претерпевает обратимый фазовый переход, превращаясь из жидкого состояния в твердое. Затем нагретая охлаждающая жидкость по трубопроводу 34 поступает в полость водяного насоса 3 и в зарубашечное пространство ДВС, разогревая последний.
Расширительный бак 17 с компенсационным трубопроводом 15 и дренажным трубопроводом 12 предназначены для компенсации увеличения объема жидкого теплоносителя вследствие его теплового расширения, удаления воздуха и паров охлаждающей жидкости, а также для заполнения системы.
Предложенные технические решения обеспечивают поддержание температуры охлаждающей жидкости в оптимальном диапазоне за счет более полного использования тепловой энергии отработавших газов ДВС, что позволяет сократить продолжительность прогрева и повысить температуру теплоносителя до оптимального диапазона при низких отрицательных температурах окружающей среды.
Система служит для сокращения продолжительности прогрева и поддержания оптимальной температуры охлаждающей жидкости двигателя внутреннего сгорания и может быть легко реализована в тракторостроении и транспортном машиностроении.
Класс F02N19/00 Вспомогательные средства для запуска двигателей внутреннего сгорания, не отнесенные к предыдущим группам