способ управления рабочим циклом поперечной подачи при шлифовании
Классы МПК: | B24B51/00 Устройства для автоматического управления отдельными операциями при шлифовании изделий |
Автор(ы): | Решетов Анатолий Григорьевич (RU), Шанин Александр Алексеевич (RU), Ежелев Андрей Викторович (RU), Конаш Александр Борисович (RU), Заятров Алексей Викторович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" (RU) |
Приоритеты: |
подача заявки:
2012-05-10 публикация патента:
20.08.2013 |
Изобретение относится к области машиностроения и может быть использовано при автоматизации круглошлифовальных, внутришлифовальных и желобошлифовальных станков в массовом и крупносерийном производстве. В момент окончания обработки определяют конечную скорость снятия припуска в основном контуре, на основании которой определяют шероховатость поверхности детали в момент окончания обработки. Момент разладки процесса шлифования и момента начала статистической оценки осуществляют по малой выборке - среднему значению размера детали и размаху шероховатости в момент окончания обработки. Среднее значение и размах погрешности изготовления и шероховатости детали определяются в статических условиях послеоперационного контроля в дополнительном контуре. Используя оценку шероховатости, осуществляют параметрическую идентификацию шероховатости детали в момент окончания обработки. На основе оценки погрешности изготовления выполняют коррекцию припуска на выхаживание в основном контуре системы управления. В результате уменьшается трудоемкость контроля и повышается точность определения момента разладки процесса шлифования и появления особой причины. 3 ил.
Формула изобретения
Способ управления рабочим циклом поперечной подачи при шлифовании, включающий переключение подачи шлифовального суппорта в функции текущего припуска, контролируемого основным контуром системы управления, и определение припуска на выхаживание детали на этапе послеоперационного контроля, осуществляемого на основе статистических оценок среднего значения размеров деталей и размаха малой выборки деталей, контролируемых дополнительным контуром системы управления, отличающийся тем, что в момент окончания обработки определяют конечную скорость снятия припуска, на основе которой определяют шероховатость поверхности детали в момент окончания обработки, а по малой выборке - среднее значение размеров и размах шероховатости в момент окончания обработки, по отклонению которых определяют момент разладки процесса шлифования и момент начала статистической оценки среднего значения размеров и размаха погрешности изготовления и шероховатости детали, определяемых в статических условиях послеоперационного контроля, причем на основе оценки шероховатости в статических условиях осуществляют параметрическую идентификацию шероховатости детали в момент окончания обработки, а на основе оценки погрешности изготовления выполняют корректирующее воздействие путем изменения припуска на выхаживание в основном контуре системы управления.
Описание изобретения к патенту
Изобретение относится к области машиностроения и может быть использовано для автоматизации круглошлифовальных, внутришлифовальных и желобошлифовальных станков в массовом и крупносерийном производстве.
Известен способ управления шлифованием на основе двухконтурных систем (Решетов А.Г., Шелеметьев В.Д. Самонастраивающаяся комбинированная система активного контроля с электронным статистическим компаратором во втором контуре. В сб. «Алгоритмизация и автоматизация технологических процессов и промышленных установок», Куйбышев, КуАИ, 1984, с.157-162), при котором переключение подачи V C шлифовального суппорта осуществляется основным контуром в функции припуска S обрабатываемой детали VC(S).
Обратная связь осуществляется с помощью дополнительного контура, который выполняет контроль размера обработанной детали в ручном или полуавтоматическом режиме. При отклонении размера детали на величину L выполняется коррекция, как правило, припуска на выхаживание Sв, т.е.
Таким образом, двухконтурная система управления реализует адаптивный алгоритм управления вида VC(S,П), где П - параметр адаптации, определяемый отклонением размера обработанной детали от номинального значения.
Использование двухконтурной системы и адаптивного алгоритма управления поперечной подачей обусловлено наличием возмущающих факторов, носящих случайный функциональный характер. К числу таких факторов, характерных для процесса шлифования, относятся, например, износ и затупление шлифовального круга, тепловые и силовые деформации, износ измерительных наконечников и другие. Результирующее воздействие перечисленных факторов определяет, в конечном итоге, погрешность обработанной детали L.
Управляющее воздействие призвано компенсировать действие суммарного возмущающего фактора за счет коррекции алгоритма управления, в данном случае, путем изменения припуска на выхаживание Sв.
В роли дополнительного контура в двухконтурных системах выступают, как правило, приборы послеоперационного контроля со статистической обработкой измерительной информации (Решетов А.Г. Автоматизация шлифования и размерного контроля деталей. Политехник, С.-П., 2003, с.124).
Статистическая обработка результатов контроля производится в таких системах по малой выборке деталей размером 3 5 шт. с интервалом 30 60 минут. Размер выборок и периодичность их отбора имеют принципиальное значение с точки зрения расслоения измерительной информации. Малый размер выборки обеспечивает при этом «мгновенность», а следовательно, лучшие возможности обнаружения действия особых причин. Другим обстоятельством, принимаемым в расчет при определении размера выборки, является трудоемкость контроля, выполняемого большей частью вручную.
Подобным образом влияет и периодичность отбора выборок: короткие интервалы между выборками снижают риск незамеченной разладки, но увеличивают трудоемкость контроля.
К числу недостатков двухконтурных систем контроля со статистической обработкой результатов контроля во втором контуре следует отнести низкую чувствительность устройства к обнаружению особой причины на ранних стадиях ее проявления. Как следствие, статистический контроль и, в частности, метод средних значений (карта ), использующий в качестве показателя качества размеры обработанных деталей, обладает значительным запаздыванием в реализации управляющего воздействия, что снижает эффективность статистического регулирования технологического процесса обработки деталей.
Лучшие результаты могут быть получены, если обнаружение момента разладки и появления особой причины будут выполнены на основе анализа высокочастотных составляющих, входящих в исходный информационный сигнал, с помощью известного устройства управления рабочим циклом поперечной подачи при шлифовании (прототип - патент RU 2355556 C2, опубл. 20.05.2009 г., БИ № 14). Сигнал, содержащий высокочастотные составляющие, принадлежит шероховатости обработанной поверхности и другим проявлениям погрешности формы (Невельсон М.С. Автоматическое управление точностью обработки на металлорежущих станках. Л.: Машиностроение, 1982, с.18). Шероховатость и погрешность формы первыми реагируют на изменение условий обработки, и в этой связи шероховатость может быть использована для обнаружения особой причины в контролируемом технологическом процессе механообработки. С этой целью обработанные на станке детали контролируются прибором послеоперационного контроля по шероховатости на соответствие Ra<Ra доп, где Ra доп - предельно допустимое значение шероховатости. Объем выборки здесь может быть равен одной детали, а периодичность отбора сохраняется такой же, как и при контроле размеров деталей. При обнаружении R a Ra доп оператор начинает выполнять обычный статистический контроль размеров деталей по малой выборке (3 5 деталей) с последующим построением контрольной карты X-R и статистическим регулированием технологического процесса.
Однако данному методу свойственны недостатки:
1) возрастает трудоемкость послеоперационного контроля вследствие необходимости отслеживать показатель качества и по шероховатости и по размеру детали. Как следствие увеличивается стоимость системы послеоперационного контроля, содержащей автономные структуры контроля и статистического анализа двух показателей качества - шероховатости и размера детали;
2) запаздывание в обнаружении особой причины остается значительным, так как контроль шероховатости осуществляется с той же периодичностью, что и контроль размера детали.
Задачей изобретения является уменьшение трудоемкости контроля и повышение точности определения момента разладки и появления особой причины. С этой целью предлагается способ определения показателя качества детали - микрогеометрии поверхности - на основе измерения скорости съема металла в момент окончания обработки и отвода шлифовального круга.
Действительно, микрогеометрия (шероховатость) поверхности детали в момент окончания обработки при прочих равных условиях является функцией конечной скорости съема металла Vмк (Михелькевич В.Н. Автоматическое управление шлифованием. М.: Машиностроение, 1975, с. 24).
где С1, n - эмпирические коэффициенты.
Так как при механообработке на обрабатываемую деталь воздействуют многочисленные возмущающие факторы, микрогеометрия поверхности детали формируется случайным образом и поэтому ее количественная оценка осуществляется статистическими методами по малой выборке (3 5 деталей) или методом скользящей средней
Технический результат заключается в выполнении контроля микрогеометрии (шероховатости) детали непосредственно в цикле обработки детали без участия оператора станка с помощью измерения косвенного параметра - скорости съема припуска в момент окончания обработки.
Поставленная задача решается тем, что в предлагаемом способе управления шлифовальным станком, включающем переключение подачи шлифовального суппорта в функции текущего припуска, контролируемого основным контуром системы управления, и определение припуска на выхаживание детали на этапе послеоперационного контроля, осуществляемого на основе статистических оценок среднего значения и размаха малой выборки деталей, контролируемых дополнительным контуром системы управления, в момент окончания обработки определяют конечную скорость снятия припуска. На основе конечной скорости снятия припуска определяют шероховатость поверхности детали в динамике в момент окончания обработки. По малой выборке определяют среднее значение и размах шероховатости в момент окончания обработки, по отклонению которых определяют момент разладки процесса шлифования и момент начала статистической оценки - среднего значения и размаха погрешности изготовления и шероховатости детали, определяемых в статических условиях послеоперационного контроля. На основе оценки шероховатости в статических условиях осуществляют параметрическую идентификацию шероховатости в момент окончания обработки. На основе оценки погрешности изготовления выполняют корректирующее воздействие путем изменения припуска на выхаживание в основном контуре системы управления.
Способ управления рабочим циклом поясняется графиками фиг.1, фиг.3 и блок-схемой фиг.2.
На фиг.1 представлен наиболее распространенный в производственной практике трехинтервальный цикл управления поперечной подачей VC(S) реализуемый основным контуром. На фиг.2 представлена блок-схема двухконтурной системы управления. На фиг.3 (а, б, в) представлены диаграммы шероховатости R a, определяемые различным образом: (а) - в соответствии с (2) в момент окончания обработки детали; (б) - через среднее значение по малой выборке; (в) - методом скользящей средней. На фиг.3, г представлена карта средних значений для погрешности размеров , определяемых в статических условиях послеоперационного контроля до и после обнаружения особой причины. Момент появления особой причины обозначен на диаграмме линией А-А.
Обработка детали на станке осуществляется, как это показано на фиг.1, по трехинтервальному циклу управления 1 поперечной подачей вида VC(S). Фазовая траектория Vм(S) отражает основные характеристики процесса шлифования.
Примем на начальном этапе, например, после правки круга, что действие возмущающего фактора (затупление круга) отсутствует или незначительно, а обработка детали ведется по траектории 2 (Sн-V м1-Vм2-Vм оpt). Значение конечной скорости Vмк=Vмк opt будем считать оптимальным для разрешенного диапазона конечных скоростей, обозначенных, как Vмк min и Vмк max, которые в свою очередь однозначно определяют диапазон вариаций шероховатости Ra от номинального значения.
На последующих этапах работы действие возмущающего фактора будет нарастать и для его компенсации необходимо будет изменить припуск на выхаживание с S2 на . При этом фазовая траектория 3 пройдет через точки S н-Vм3-Vм4-Vмк оpt и положение конечной точки фазовой траектории сохранит свое значение V мк=Vмк оpt.
Значение припуска на выхаживание определяется в соответствии с выражением (1) в дополнительном контуре 4 системы активного контроля с помощью прибора послеоперационного контроля 5. Указанный прибор с помощью датчиков 6 и 7, контролирующих погрешность размера детали и шероховатость соответственно, осуществляет статистическую обработку информации, как это представлено на графиках фиг.3.
Самым важным моментом при статистическом управлении качеством продукции является как можно более раннее обнаружение возникновения особой причины, приводящей к разладке технологического процесса.
Рассмотрим последовательно процесс обнаружения системой контроля момента разладки и принятие мер для формирования управляющего воздействия с помощью графиков фиг.3.
При обработке детали 8 на станке 9 основной контур 10 системы активного контроля определяет в соответствии с (3) значение шероховатости R a в момент окончания обработки. Получающиеся значения шероховатости Ra выводятся на дисплей 11 основного контура в виде точечной диаграммы 12 Ra(n). Среднее значение соответствует значению конечной скорости съема припуска Vмк=Vмк оpt.
Расслоение информации с целью определения особой причины осуществляется путем статистической обработки последовательности Ra (n), например, с помощью выборок определенного размера (график 13) или методом скользящей средней (график 14). В момент, обозначенный на фиг.3 прямой А-А, обнаруживается действие особой причины, выражающееся в данном случае в приближении технологического процесса к верхней границе регулирования UСLRa.
С этого момента автоматически или с помощью оператора осуществляется послеоперационный контроль размеров обработанных деталей 8 с помощью датчика 6 и прибора послеоперационного контроля 5.
На фиг.3 кривая 15 на контрольной карте средних значений отражает течение наблюдаемого технологического процесса. До появления особой причины, обозначенной прямой А-А, моменты изъятия выборок в силу отсутствия необходимости обнаружения особой причины, достаточно редки и определяются причинами долговременного порядка: анализом стабильности технологического процесса во времени, контролем точности оборудования, совершенствованием технологического процесса и т.д. После появления особой причины частота изъятия выборок увеличивается и определяется мерами регулирующего воздействия и характером компенсируемого возмущающего фактора.
По достижении результата регулирования частота изъятия выборок возвращается к первоначальному значению, действовавшему до появления особой причины. Такой способ статистического контроля значительно снижает его трудоемкость.
Для параметрической идентификации коэффициента С2, необходимого для модели (3), периодически осуществляется контроль шероховатости с помощью датчика 7 и прибора послеоперационного контроля 5.
В реальной практике для экономии затрат процедуру идентификации при стабильном характере 12 достаточно проводить периодически в метрозале или ОТК производства.
Практическая реализация заявленной системы выполнена на основе приборов, разработанных в совместной научно-производственной лаборатории «Автоматические системы контроля» Тольяттинского государственного университета и ОАО «АВТОВАЗ».
Основной контур 10 системы выполнен на основе прибора модели АСК2974, имеющего в своем составе бортовой компьютер и устройство визуализации для наблюдения технологического процесса и построения контрольных карт (фиг.3).
Дополнительный контур 4 содержит прибор контроля размеров и шероховатости детали модели АСК1147. Краткие технические сведения по указанным приборам прилагаются.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА АКТИВНОГО КОНТРОЛЯ МОДЕЛИ АСК2974 | |
1. Количество входных каналов | 2; |
2. Тип датчиков | индуктивный контактный; |
3. Тип системы индикации | TFT-LCD; 5,7 |
4. Визуальная информация, представленная устройством индикации | - текущий припуск обрабатываемой детали в линейно-дискретной форме в диапазоне - 100-0-500 мкм; |
- текущий припуск обрабатываемой детали в цифровой форме с дискретностью отсчета 1,0 мкм; | |
- точечные диаграммы погрешности размера детали L и шероховатости Ra, определяемые в момент окончания обработки; | |
- фазовые характеристики процесса обработки в координатах Vм-S; | |
- настроечная и служебная информация. | |
5. Предел размаха срабатывания команд в рабочем диапазоне, мкм | 0,5; |
6. Число команд управления | до 8; |
7. Вид контролируемой поверхности | гладкая, прерывистая; |
8. Интерфейс, используемый для приема-передачи сообщений | RS232; |
9. Питание прибора | 100 240 В, 50 Гц; |
10. Потребляемая мощность, ВА | 30; |
11. Габаритные размеры, мм | 340×285×135. |
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА КОНТРОЛЯ РАЗМЕРОВ И ШЕРОХОВАТОСТИ ДЕТАЛИ МОДЕЛИ АСК1147 | |
1. Метод получения измерительной информации | контактный в измерительном приспособлении; |
2. Тип используемых датчиков | индуктивный, дифференциальный; |
3. Количество входных информационных каналов | до 8 |
4. Используемый интерфейс для приема-передачи информационных сигналов | RS232; |
5. Контролируемые параметры: L, Ra | отклонение размера детали от номинального значения; |
6. Рассчитываемые статистические параметры | среднее значение выборки среднее значениешероховатости , размах R L, стандартное отклонение S; |
7. Визуальное представление статистической информации | карта Шухарта; |
8. Габаритные размеры, мм | 310×265×120; |
9. Питание | 100 240 В: 50 Гц. |
Класс B24B51/00 Устройства для автоматического управления отдельными операциями при шлифовании изделий