способ изготовления пеностекла
Классы МПК: | C03B19/08 вспениванием C03C11/00 Пеностекло |
Автор(ы): | Казанцева Лидия Константиновна (RU), Железнов Дмитрий Валерианович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) (RU) |
Приоритеты: |
подача заявки:
2012-02-27 публикация патента:
20.08.2013 |
Изобретение относится к теплоизоляционным материалам, в частности пеностеклу. Технический результат изобретения заключается в расширении диапазона плотности пеностекла от 150 до 600 кг/м 3 и в создании способа производства пеностекла, безопасного для печного оборудования и для окружающей среды. Измельченную цеолитсодержащую породу смешивают с водным раствором NaOH при следующем соотношении, мас.%: цеолитсодержащая порода - 75-80, NaOH - 15-20. Сырьевую смесь гранулируют, гранулы высушивают, выдерживают на воздухе в течение 1-4 суток. Вспенивание проводят при температуре 680-800°C. 1 табл., 2 ил.
Формула изобретения
Способ изготовления пеностекла, включающий измельчение цеолитсодержащей породы, приготовление сырьевой смеси смешиванием измельченной породы с водным раствором NaOH, вспенивание и отжиг, отличающийся тем, что сырьевую смесь гранулируют, гранулы высушивают, выдерживают на воздухе в течение 1-4 суток, а вспенивание проводят при температуре 680-800°C, при этом сырьевая смесь содержит, мас.%: цеолитсодержащая порода - 75-80, NaOH - 15-20.
Описание изобретения к патенту
Изобретение относится к теплоизоляционным материалам, в частности пеностеклу, и может быть использовано в строительстве, для тепловой и акустической изоляции ограждающих конструкций, межкомнатных перегородок и перекрытий, производственного оборудования, трубопроводов, для тепловой изоляции холодильных установок промышленных холодильников, складов с термическим регулированием, и любых других конструкций и установок.
Известен способ получения пористого строительного материала из кремнеземсодержащего компонента, щелочного компонента и воды (Патент РФ № 2300506, МПК С04В 28/24, С04В 111/20, С04В 111/20, опубл. 10.06.2007. По известному решению получают пористый материал с плотностью от 70 до 400 кг/м3. В качестве кремнеземсодержащего компонента используют кремнистые породы - трепелы, опоки, диатомиты, со следующим химическим составом, мас.%: SiO2 (аморфный кремнезем) - 30-98; Al2O3 - 0,1-20; Fe 2O3 - 0,1-12; неизбежные примеси - 1,8-38. Способ изготовления пористого строительного материала по известному решению заключается в следующем: кремнистые породы измельчают и смешивают с водным раствором щелочи, увлажненная щелочная силикатная смесь на поддонах подается в сушильную камеру, где удаляется физическая вода до получения силикатной массы с влажностью менее 5 мас.%. Сухую силикатную массу вновь измельчают в мельнице до размера фракции 30-80 мкм. Силикатным порошком заполняют формы и подвергают ступенчатому температурному воздействию в диапазонах: до 165, 165-220, 230-350, 450-600°C. Назначение ступенчатого нагревания - дегидратация гидроксидов железа и алюминия. Вероятно, без этой процедуры может быть слишком высокое порообразование при низких температурах с формированием крупной, открытой, неравномерной пористостью. При этом в примерах указывается, что нагревание и выдержку на каждой ступени производят следующим образом: 145-155°C - 9-12 ч, 170°C - 6-8 ч, 190°C - 6-8 ч, 250°C - 6-8 ч, 320°C - 6-8 ч, 580-600°C - 6-8 ч. Затем поднимают температуру до температуры плавления смеси (650-900°C) и выдерживают от 3 до 5 ч, при которой происходит дегидратация гидроксидов кремния, выделение паров воды в замкнутых порах и порообразование за счет давления паров воды на расплавленные силикатные оболочки пор.
Основными недостатками известного способа получения пористого строительного материала являются следующие:
- необходимость двукратного измельчения - исходной породы и сухой силикатной массы. Причем, сухую силикатную массу необходимо измельчать до высокой степени тонины (30-80 мкм);
- необходимость длительной выдержки при каждой температуре в процессе поэтапного прогревания состава, которая в общей сумме составляет 39 ч при минимальном времени выдержки на каждом этапе. Кроме этого необходима длительная выдержка при температуре плавления и порообразования силикатной массы от 3 до 5 ч.
Недостатком является также то, что NaOH, находящаяся в высушенной силикатной массе, при нагревании будет частично испаряться в окружающую атмосферу. Постепенно пары щелочи, выделяющиеся совместно с парами воды при дегидратации железа и алюминия, будут разрушать печное устройство.
Наиболее близкой к заявляемому изобретению, является получение пористого материала типа пеностекла - пеноцеолит (Патент РФ № 2272007, МПК С03С 11/00, опубл. 2006.03.20) с плотностью 950-643 кг/м3, полученный вспениванием шихты, содержащей, мас.%: цеолитсодержащий туф - 86,2-87,2; NaOH - 12,8-13,8 при температуре 850-900°C. Способ изготовления пеностекла - пеноцеолита по известному решению заключается в следующем: цеолитсодержащую породу измельчают до прохождения через сито 0,5 мм, порошок перемешивают с раствором щелочи, смесь помещают в металлические формы и вспенивают при температуре 850-900°.
Основными недостатками известного способа получения пеностекла являются следующие:
- высокие показатели плотности - 643-950 кг/м 3, что не позволяет это изделие использовать в качестве эффективного теплоизолирующего строительного материала. Такой материал является конструкционно-теплоизоляционным;
- высокая температура вспенивания - 850-900°C и узкий температурный диапазон вспенивания - 50°C;
- в печное пространство печи будет лететь много паров щелочи, так как щелочная влажная смесь сразу подается в печь для вспенивания, что приведет к быстрому износу печного устройства, а также к частичной потере дорогостоящего соединения - NaOH.
Технической задачей предложенного изобретения является получение пеностекла с наиболее эффективным плавнем - NaOH, но по безопасной для печного оборудования и для окружающей среды технологии. Пеностекло, полученное по этому способу, характеризуется всеми полезными качествами, связанными с неорганическим составом (негорючее, пожаробезопасно, экологически безвредно, долговечно, не гниет, не разрушается со временем и т.д.).
Техническим результатом предложенного изобретения является создание безопасного для печного оборудования и для окружающей среды способа изготовления пеностекла с широким диапазоном плотности от 150 до 600 кг/м3. Такое пеностекло при плотности до 250 кг/м3 может использоваться как высокоэффективный теплоизолирующий пеноматериал, а более плотный - как конструкционно-теплоизоляционный. Кроме того, техническим результатом предложенного решения является снижение себестоимости продукции за счет устранения потерь NaOH в окружающую атмосферу.
Технический результат достигается тем, что в заявленном способе изготовления пеностекла, включающем измельчение цеолитсодержащей породы, приготовление сырьевой смеси смешиванием измельченной породы с водным раствором NaOH, вспенивание и отжиг, сырьевую смесь гранулируют, гранулы высушивают, выдерживают на воздухе 1-4 суток и вспенивают при температуре 680-800°C, при этом сырьевая смесь содержит, мас.%: цеолитсодержащая порода - 75-80; NaOH - 15-20.
После замешивания порошка породы водным раствором гидроксида натрия, последний частично ассимилируется внутрикристаллическими пустотами цеолитовых кристаллов и не испаряется в атмосферу при нагревании. Свободная часть NaOH, находящаяся на поверхности измельченных частиц породы, при вылеживании гранул на воздухе переходит в карбонатное соединение, которая при нагревании не испаряется в атмосферу, а разлагается с выделением паров воды и СО2.
Необходимость изготовления гранул связано с тем, что в гранулированном виде масса быстрее просушивается, а при вылеживании в атмосфере воздуха в них протекают наиболее полно процессы карбонатизации.
Высушенные гранулы выдерживают на воздухе от 1 до 4 суток для полного преобразования свободной NaOH в карбонатное соединение (Na3[СО 3][НСО3]·2Н2O) - трона. Образование троны возможно в связи с тем, что гидроксиды щелочных и щелочноземельных металлов взаимодействуют с углекислым газом воздуха с образованием карбонатных солей. Процесс карбонатизации гидроксида натрия в цеолитсодержащем составе ускоряется за счет того, что цеолитовые кристаллы, обладающие каталитическими свойствами, сорбируют некоторые газы, в том числе CO2 и пары воды из воздуха. За счет этого поступление углекислого газа и паров воды к NaOH, равномерно распределенной по поверхности измельченных частиц цеолитовой породы ускоряется.
Образовавшаяся трона при нагревании разлагается с выделением паров воды и CO2, которые не разрушают внутренние детали печных агрегатов. Таким образом, за счет карбонатизации свободной NaOH при выдерживании сухих гранул на воздухе, устраняется летучесть гидрооксида натрия при нагревании состава в печных агрегатах.
Ограничение по времени выдерживания гранул на воздухе определяется временем протекания процесса карбонатизации. Выдерживание гранул на воздухе более 4 суток технологически не целесообразно, так как за это время процесс карбонатизации протекает в полном объеме. Выдерживание гранул на воздухе менее одних суток бывает недостаточно для осуществления этого процесса в гранулах.
Вспенивание гранулированной смеси производят в температурном диапазоне 680-850°C. Это наиболее оптимальный диапазон в технологическом и производственном плане. В этом диапазоне осуществляется наиболее полно выделение порообразующего газа, а вязкость расплава оптимальная для вспенивания и сохранения пены без оседания.
Ограничение по составу шихты определяется оптимальностью протекания технологических процессов и качеством продукции. При концентрации NaOH в смеси более 25 мас.% наблюдается неустойчивость пены при максимальной температуре вспенивания и ее оседание при охлаждении. При концентрации NaOH в смеси менее 15 мас.% плавление состава и порообразование в указанном температурном диапазоне осуществляется слабо.
На фиг.1 представлены дифрактограммы, иллюстрирующие процесс карбонатизации NaOH в гранулах: профиль 1 - исходный цеолитсодержащий туф Холинского месторождения; профиль 2 - гранулы состава цеолитовая порода+NaOH сразу после сушки; профиль 3 - гранулы после выдерживания на воздухе 2 суток, образование троны фиксируется по появлению рефлексов при углах 2 °: 9,16; 29,16; 29,98; профиль 4 - пеностекло после вспенивания гранул при температуре 850°С., где
- клиноптилолит; кв - кварц; п - плагиоклаз; Тр - трона (Na3[СО3][НСО3]·2H 2O).
На фиг.2 показан электронно-микроскопический снимок скола гранулы, выдержанной на воздухе 2 суток. Карбонатизация NaOH проявляется в виде игольчатых кристаллов троны.
Пеностекло по предложенному способу формируется следующим образом: цеолитсодержащий туф из любого месторождения измельчают в шаровой или любой другой мельнице до прохождения через сито 0,5. Измельченный порошок смешивают с водным раствором NaOH в пределах указанного соотношения цеолитсодержащего туфа и NaOH. После получения формующейся влажной смеси из нее формуют гранулы размером 3-7 мм, которые высушивают при 100°C. Сухие гранулы выдерживают в атмосфере воздуха в течение 1-4 суток, после чего их засыпают в жаростойкие формы и обжигают в печи при температуре 680-850°C. После вспенивания до нужной плотности (150-600 кг/м3), изделие отжигают по обычным режимам отжига пеностекольных изделий.
В таблице приведены составы смеси для получения пеностекла по предложенному способу изготовления.
Таблица 1 | |||
№ п/п | Состав шихты, мас.% | Температура обжига, °C | Плотность, г/см3 |
1 | Холинский туф - 75 | 850 | 150 |
NaOH - 25 | |||
2 | Шивыртуйский туф - 85 | 680 | 600 |
NaOH - 15 | |||
3 | Хонгуринский туф - 80 | 800 | 250 |
NaOH - 20 |