способ переработки устойчивых нефтяных эмульсий и застарелых нефтешламов

Классы МПК:C10G1/00 Получение жидких углеводородных смесей из горючих сланцев, нефтеносного песка или неплавких твердых углеродсодержащих или тп материалов, например из древесины, каменного угля
C10G33/00 Обезвоживание или деэмульсация углеводородных масел
C02F1/465 электрофлотацией
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" (RU)
Приоритеты:
подача заявки:
2012-07-06
публикация патента:

Изобретение относится к переработке устойчивых нефтяных эмульсий и застарелых нефтешламов в нефтедобывающей и нефтеперерабатывающей промышленности. Изобретение касается способа переработки устойчивых нефтяных эмульсий и застарелых нефтешламов, включающего нагревание водяным паром, отстаивание до содержания воды в нефтешламе не более 50 мас.%, удаление нефтепродуктов для получения мазута. Нефтешлам предварительно нагревают до температуры 55-60°С и отстаивают, после чего воду сливают, затем нагревают нефтешлам до температуры 100-102°С в течение 48-72 ч, испаряют воду до остаточной обводненности 1 мас.%, после чего нефтепродукт сливают, отделившуюся отстаиванием воду и сконденсированный пар смешивают, разделяют центробежными силами на воду, механические примеси и нефтепродукты, после чего воду подвергают очистке электрофлотацией, последовательным фильтрованием в углеводородных волокнистых материалах и активных углях, затем доочищают фильтрованием в минеральных зернистых материалах, при этом фильтрование в активных углях ведут в электрическом поле, созданном электрохимическими источниками тока, причем извлеченные центробежными силами и электрофлотацией обводненные нефтепродукты обезвоживают седиментацией и смешивают с основным потоком обезвоженных нефтепродуктов, а обводненные механические примеси обезвоживают на шламовых площадках. Технический результат - углеводородный продукт с низкой обводненностью, утилизация механических примесей и сточных нефтесодержащих вод. 3 табл., 3 пр., 1 ил.

способ переработки устойчивых нефтяных эмульсий и застарелых   нефтешламов, патент № 2490305

Формула изобретения

Способ переработки устойчивых нефтяных эмульсий и застарелых нефтешламов, включающий нагревание водяным паром, отстаивание до содержания воды в нефтешламе не более 50 мас.%, удаление нефтепродуктов для получения мазута, отличающийся тем, что нефтешлам предварительно нагревают до температуры 55-60°С и отстаивают, после чего воду сливают, затем нагревают нефтешлам до температуры 100-102°С в течение 48-72 ч, испаряют воду до остаточной обводненности 1 мас.%, после чего нефтепродукт сливают, отделившуюся отстаиванием воду и сконденсированный пар смешивают, разделяют центробежными силами на воду, механические примеси и нефтепродукты, после чего воду подвергают очистке электрофлотацией, последовательным фильтрованием в углеводородных волокнистых материалах и активных углях, затем доочищают фильтрованием в минеральных зернистых материалах, при этом фильтрование в активных углях ведут в электрическом поле, созданном электрохимическими источниками тока, кроме того, извлеченные центробежными силами и электрофлотацией обводненные нефтепродукты обезвоживают седиментацией и смешивают с основным потоком обезвоженных нефтепродуктов, а обводненные механические примеси обезвоживают на шламовых площадках.

Описание изобретения к патенту

Изобретение относится к переработке устойчивых нефтяных эмульсий и застарелых нефтешламов в нефтедобывающей и нефтеперерабатывающей промышленности.

Известен способ утилизации нефтешламов, который заключается в том, что гомогенизированное и диспергированное сырье в диапазоне температур 55-60°C перерабатывается в четырех акустических кавитационных смесителях. После каждого смесителя обрабатываемую среду подают в соответствующие устройства ввода и разделения продукта для расслоения полученной эмульсии путем преобразования турбулентного потока в ламинарный поток для последующего раздельного использования фракций. Обработку эмульсии выполняют в три стадии - предварительную и основную с промывкой эмульсии горячей водой с температурой 55-60°C, и дополнительную - очистки избыточной воды в акустических смесителях и в гидроциклоне с получением флотослоя - водной эмульсии товарного продукта при перемешивании эмульсии с получением суспензии избыточной воды, механических примесей и диспергированного в воде воздуха. Затем отдельную пульпу вывозят на утилизацию, а избыточную воду направляют в резервуар или на утилизацию. (Патент РФ № 2428454).

Недостатком изобретения является загрязнение окружающей среды извлеченными обводненными механическими примесями и сточными нефтесодержащими водами.

Наиболее близкими техническим решением задачи является способ переработки нефтешламов, при котором нефтешлам прокачивают через пароподогреватель, где нагревают водным паром до температуры 40-140°C, подогретый нефтешлам отстаивают до содержания в нем воды не более 50 мас.%, проводят дезинтегрирование нефтешлама, смешивают со стабилизатором, мазутом марки М-100, получают полидисперсный продукт вода-нефть, который откачивают как топочный мазут. (Патент РФ № 2435831).

Недостатком способа является получение углеводородного продукта низкого качества из-за высокой обводненности, дополнительный расход товарного продукта-мазута М-100, загрязнение окружающей среды сточными нефтесодержащими водами.

Задачей изобретения является получение углеводородного продукта с низкой обводненностью, утилизация механических примесей и сточных нефтесодержащих вод.

Сущность способа переработки устойчивых нефтяных эмульсий и застарелых нефтешламов, включающего нагревание водяным паром, отстаивание до содержания воды в нефтешламе не более 50 мас.%, удаление нефтепродуктов для получения мазута, заключается в том, что согласно изобретению нефтешлам предварительно нагревают до температуры 55-60°C и отстаивают, после чего воду сливают, затем нагревают нефтешлам до температуры 100-102°C в течение 48-72 ч, испаряют воду до остаточной обводненности 1 мас.%, после чего нефтепродукт сливают, отделившуюся отстаиванием воду и сконденсированный пар смешивают, разделяют центробежными силами на воду, механические примеси и нефтепродукты, после чего воду подвергают очистке электрофлотацией, последовательным фильтрованием в углеводородных волокнистых материалах и активных углях, затем доочищают фильтрованием в минеральных зернистых материалах, при этом фильтрование в активных углях ведут в электрическом поле, созданном электрохимическими источниками тока. Извлеченные центробежными силами и электрофлотацией обводненные нефтепродукты обезвоживают седиментацией и смешивают с основным потоком обезвоженных нефтепродуктов, в обводненные механические примеси обезвоживают на шламовых площадках.

На фигуре представлена технологическая схема переработки нефтешлама.

Технологическая схема включает горизонтальную цилиндрическую емкость 1, в которую подается нефтешлам и теплоноситель (пар). Верхний патрубок соединен с конденсатором 2, выход которого соединен с выходным патрубком 3 воды емкости 1 и входом смесителя 4 воды. Смеситель 4 последовательно соединен с гидроциклоном 5, электрофлотатором 6, сорбционным фильтром 7, электрохимическим сорбционным фильтром 8, фильтрующей траншеей 9. Патрубки удаления нефтепродуктов гидроциклона 5 и электрофлотатора 6 соединены со входом отстойника 10. Верхний патрубок отстойника 10 соединен с патрубком 11 емкости 1 и со входом смесителя 12 нефтепродуктов, нижний патрубок отстойника 10 соединен со входом смесителя 4 воды. Осадочная часть гидроциклона 5 соединена со шламовой площадкой 13.

Способ осуществляется следующим образом. Нефтешлам подается на вход горизонтальной цилиндрической емкости 1 до ее заполнения. С помощью теплоносителя с температурой 140-160°C (пар) нефтешлам подогревают до температуры 55-60°C и отстаивают в течение 2-3 часов. Происходит осаждение тяжелой фазы (воды с механическими примесями), которая через патрубок 3 отводится из емкости 1. Затем ведут разогрев нефтешлама до температуры 100-102°C. При этой температуре происходит испарение остаточной воды в течение 2-3 суток. Испарившаяся вода поступает в конденсатор 2, из которого конденсат, содержащий легкие углеводороды, подают в смеситель 4 воды для испарения ранее отделившейся воды. Далее из воды извлекают механические примеси и нефтепродукты с помощью центробежных сил в напорном гидроциклоне 5 и ведут тонкую очистку от нефтепродуктов флотацией пузырьками водорода и кислорода, полученными при электролизе воды в электрофлотаторе 6. После очистки воды электрофлотацией содержание нефтепродуктов составляет менее 10 мг/л, что превышает предельно допустимые концентрации для водоемов рыбохозяйственного назначения (ПДКрх=0,5 мг/л). Дальнейшая доочистка воды ведется за счет сорбции в фильтре 7, загруженном волокнистым гидрофобным углеродным материалом (соломой знаковых культур) и в электрохимическом сорбционном фильтре 8. Сорбционный фильтр 8 загружен активным углем АГ-2. В теле фильтра вертикально установлены стержневые электроды из электроположительного материала (медь) и электроотрицательного материала (алюминий), образующие чередующиеся ряды. Расстояние между электродами разной полярности составляет 200-250 мм. (Патент РФ № 2422187). Электроды одинаковой полярности соединены общей шиной, между шинами разной полярности включено сопротивление нагрузки R, в качестве которого могут быть индикаторные светодиодные лампы или другие потребители энергии. Наличие электрического поля увеличивает эффективность извлечения растворенных органических веществ с достижением значений ПДКрх.

Очищенная вода подается через перфорированные трубы в фильтрующие траншеи 9, заполненные минеральным зернистым материалом, например, кварцевым песком, кальцитом, кварцитом, в которых происходит доочистка фильтрованием. Фильтрующие траншеи позволяют избежать дальнейшей транспортировки очищенной воды в водные объекты.

Извлеченные в процессе очистки воды нефтепродукты, содержащие воду, подаются в отстойник 10, в котором вода отделяется и возвращается в смеситель 4, а нефтепродукты подаются в смеситель 12 для смешения с основным потоком обезвоженных нефтепродуктов, поступающих из патрубка 11.

Механические примеси, извлеченные центробежными силами в гидроциклоне 5, подаются для обезвоживания на шламовую площадку 13.

Пример 1. Переработке подвергали застарелые нефтешламы из амбаров ОАО «Салаватнефтеоргсинтез» и устойчивые эмульсии НГДУ «Ишимбайнефть». Объем емкости составляет 50 м3 . Определяли обводненность нефтешлама и эмульсии при отстаивании. Результаты опытов приведены в таблице 1.

Таблица 1
Температура, °CВремя, чОбводненность, мас.%
нефтешлама эмульсии
55 03857
552,0 3250
552,530 49
55 3,02948
553,5 2947
554,029 47
60 03958
602,0 2646
602,524 44
60 3,02242
603,5 2040
604,020 39
65 03756
652,0 2243
652,519 40
65 3,01838
653,5 1736
654,017 36

Из приведенных результатов следует, что в интервале температур 55-60°C отстаивание нефтешлама и устойчивой эмульсии происходит в течение 3-4 ч, дальнейшее отстаивание не дает эффекта. При температуре 65°C эффективность отстаивания увеличивается незначительно, но при этом растут затраты на тепловую энергию.

Пример 2. Переработке подвергали застарелые нефтешламы из амбаров ОАО «Салаватнефтеоргсинтез» и устойчивые эмульсии НГДУ «Ишимбайнефть». Объем емкости составляет 50 м3 . Определяли обводненность нефтешламов и эмульсий при выпаривании. Результаты приведены в таблице 2.

Таблица 2
Температура, °CВремя, чОбводненность, мас.%
нефтешлама эмульсии
100 020,039,0
10024 4,53,7
10036 2,92,6
100482,1 1,7
100 601,5 1,2
100 721,20,8
1020 20,039,0
10224 3,83,4
102362,0 2,2
102 480,9 1,3
102 600,50,7
10272 0,40,4
1040 20,039,0
104243,4 3,1
104 361,4 1,8
104 480,50,9
10460 0,20,5
10472 0,20,2

Из приведенных результатов следует, что заданная обводненность нефтепродуктов, равная 1 мас.%, достигается при температуре 100°C за 72 ч, при температуре 102°C за 48 ч для нефтешламов и за 60 ч для эмульсий. Повышение температуры до 104°C существенного эффекта не дает, однако увеличиваются затраты на тепловую энергию.

Пример 3. Подвергали очистке нефтесодержащие воды, являющиеся смесью отстоявшейся в емкости воды и конденсата. Наиболее загрязненными оказались воды после обработки устойчивых эмульсий, так как они содержат синтетические ПАВ, применяемые в технологии нефтедобычи, стабилизирующие сточную воду. Содержание загрязняющих веществ по ступеням очистки приведено в таблице 3.

Таблица 3
Загрязняющее веществоИсходная концентрация, мг/лКонцентрация на выходе устройства, мг/л
гидроциклон электро

флотатор
сорбционный фильтрЭлектрохимический сорбционный фильтр
механические примеси 97054 920,2
нефтепродукты1340 1146 0,30,03

Из приведенных результатов следует, что качество очищенной нефтесодержащей воды соответствует требованиям ПДК водоемов рыбохозяйственного назначения, поэтому доочистка воды в фильтрующих траншеях потребуется лишь в случае нарушения нормального режима работы очистных сооружений.

Класс C10G1/00 Получение жидких углеводородных смесей из горючих сланцев, нефтеносного песка или неплавких твердых углеродсодержащих или тп материалов, например из древесины, каменного угля

способ энерготехнологической переработки сланца -  патент 2529226 (27.09.2014)
способ и установка для получения пиролизной жидкости -  патент 2528341 (10.09.2014)
способ переработки угля и/или углеродсодержащих отходов в жидкое топливо (варианты) -  патент 2527944 (10.09.2014)
способ растворения угля, биомассы и других твердых органических материалов в перегретой воде -  патент 2526254 (20.08.2014)
вакуумный насос-маслопроизводящий реактор с гидравлическим уплотнителем для каталитических реакций риформинга из предварительно обработанных пульпообразных отходов и способ к нему -  патент 2523535 (20.07.2014)
способ крекинга биосырья с использованием катализаторов с высоким отношением площади поверхности цеолита к площади поверхности матрицы -  патент 2522432 (10.07.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
способ получения углеводородного исходного сырья из лигнина -  патент 2514596 (27.04.2014)
способ и устройство для многостадийной термической обработки резиновых отходов, в частности, отходов шин -  патент 2507237 (20.02.2014)
устройство для переработки органических и минеральных отходов -  патент 2507236 (20.02.2014)

Класс C10G33/00 Обезвоживание или деэмульсация углеводородных масел

способ обработки нефтяной эмульсии промежуточных слоев емкостного оборудования подготовки нефти и воды -  патент 2527953 (10.09.2014)
электрообессоливающая установка -  патент 2525984 (20.08.2014)
гиперразветвленные сложные полиэфиры и поликарбонаты в качестве деэмульгаторов для разрушения эмульсий сырой нефти -  патент 2516469 (20.05.2014)
деэмульгаторы в растворяющих основаниях для отделения эмульсий и способы их применения -  патент 2510413 (27.03.2014)
установка для утилизации нефтезагрязненных грунтов -  патент 2502784 (27.12.2013)
применение алкоксилированных полиалканоламинов для деэмульгирования эмульсий типа "масло в воде" -  патент 2498841 (20.11.2013)
объединенные деасфальтизация растворителем и обезвоживание -  патент 2493235 (20.09.2013)
способ обезвоживания битуминозных нефтей -  патент 2492214 (10.09.2013)
деэмульгатор для разрушения водонефтяных эмульсий -  патент 2491323 (27.08.2013)
нейтрализатор сероводорода -  патент 2490311 (20.08.2013)

Класс C02F1/465 электрофлотацией

Наверх