способ получения катализатора гидроочистки дизельного топлива
Классы МПК: | B01J37/04 смешивание B01J23/88 молибден B01J23/755 никель B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний C10G45/08 в сочетании с хромом, молибденом или вольфрамом или их соединениями B01J21/02 бор или алюминий; их оксиды или гидроксиды |
Автор(ы): | Борщ Вячеслав Николаевич (RU), Санин Владимир Николаевич (RU), Юхвид Владимир Исаакович (RU), Колесников Сергей Иванович (RU), Чеховская Ольга Мансуровна (RU), Яблонский Александр Вячеславович (RU), Кильянов Михаил Юрьевич (RU), Сысоев Владимир Анатольевич (RU), Винокуров Владимир Арнольдович (RU), Иванов Евгений Владимирович (RU), Гущин Павел Александрович (RU), Колесников Иван Михайлович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" (RU) |
Приоритеты: |
подача заявки:
2012-07-17 публикация патента:
27.08.2013 |
Изобретение относится к каталитической химии, в частности к способу получения алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива методом самораспространяющегося высокотемпературного синтеза через стадию интерметаллидных сплавов. Способ получения катализатора заключается в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода. Технический эффект - сокращение стадий приготовления катализатора и получение высокоактивного катализатора. 4 табл., 4 пр.
Формула изобретения
Способ получения катализатора гидроочистки дизельного топлива, заключающийся в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода.
Описание изобретения к патенту
Изобретение относится к области нефтепереработки и нефтехимии, в частности к технологии приготовления алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива.
Известен способ получения катализатора гидроочистки, включающий смешение соединений никеля и молибдена с гидроокисью алюминия, фильтрование, формовку, сушку и прокаливание, в котором в качестве соединений никеля и молибдена используют суспензию молибдатов никеля, получаемую растворением парамолибдата аммония в водном растворе перекиси водорода с последующим введением в нее нитрата никеля (RU 2179886, 2002).
Недостатками вышеуказанного способа является его многостадийность и недостаточная обессеривающая активность катализатора.
Известен способ получения катализатора гидроочистки, путем осаждения гидроксида алюминия сульфатным методом и введение в гидроксид алюминия сначала солей молибдена, а затем никеля при температуре 80°C и непрерывном перемешивании с последующей обработкой массы азотной или соляной кислотой (RU 2137541, 1999).
Недостатками указанного способа являются многостадийность приготовления катализатора, значительное количество отходов на промежуточных стадиях, а также недостаточная активность катализатора при невысоких температурах и давлениях процесса гидроочистки
Также известен способ приготовления катализатора гидроочистки на основе оксидов молибдена и никеля с применением термодиспергированного аморфизированного оксида алюминия, включающий смешение исходных реагентов, фильтрацию, формовку и термообработку каталитической композиции (М.И. Целютина, И.Д. Резническо и др. Экология и промышленность России, июль 2005).
Указанный способ позволяет значительно уменьшить количество отходов, но получаемый катализатор имеет недостаточную активность по удалению сернистых соединений.
Из известных технических решений наиболее близким к предлагаемому изобретению является способ получения катализатора гидроочистки, заключающийся в смешении гидроксида алюминия и сухих порошков оксидов молибдена и никеля с последующим формованием, сушкой и прокалкой при 550°C и обработкой азотной кислотой 0,015-0,025 моль на моль Al2O3 (RU 2073566, 1997).
Недостатком указанного способа является недостаточная обессеривающая активность катализатора с тенденцией снижения ее даже при увеличении в его составе активных компонентов - оксида молибдена и оксида никеля, что связано с перераспределением и блокировкой активных центров катализатора, а также многостадийность технологии приготовления.
В основу настоящего изобретения положена задача создания способа получения катализатора гидроочистки дизельного топлива, обеспечивающего повышение обессеривающей активности катализатора и упрощение технологического процесса приготовления катализатора за счет сокращения количества стадий.
Поставленная задача достигается тем, что способ получения катализатора гидроочистки дизельного топлива заключается в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин., промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода.
В основу синтеза полиметаллических сплавов в предлагаемом способе положен метод самораспространяющегося высокотемпературного синтеза (СВС), химическая схема которого представлена следующими стадиями:
(Ox1+Ох2+Ох3+ Oxn)+R [Полиметаллический сплав]+RkOl+Q,
где: Oxi - оксиды Ni, Со, Mn и т.д., R - металл восстановитель (Al), [Полиметаллический сплав] - (Ni, Со, Mn)Alx, Q - тепловой эффект процесса.
Суть процесса заключается в протекании экзотермических реакций между исходными порошковыми компонентами в волне горения. Это приводит к реализации высоких температур (выше температуры плавления продуктов реакции, до 3000°C) и формированию расплава продуктов синтеза, состоящего из двух фаз - многокомпонентного интерметаллида и оксида алюминия. Вследствие их взаимной нерастворимости и разницы в удельных весах происходит фазоразделение и кристаллизация, образующийся слиток представляет собой двухслойный продукт, где нижний слой формирует металлическая фаза, а верхний - оксидная (Al2O3). Малое время синтеза (несколько десятков секунд) и защита поверхности металлической фазы от окисления расплавом Al2O3 позволяют проводить процесс на воздухе.
Использование перегрузки, создаваемой в центрифуге СВС-установки, позволяет увеличить полноту фазоразделения и приводит к выравниванию (гомогенизации) по объему состава многокомпонентного металлического сплава. Задаваемая скорость вращения ротора центрифуги позволяет создавать в процессе синтеза требуемые перегрузки от 1 до 1000 g.
Синтез интерметаллидных сплавов из элементов осуществлялся в режиме теплового взрыва. Основная особенность этого режима синтеза заключается в том, что инициирование процесса СВС проводится не с поверхности, а за счет прогрева всего объема реагирующего вещества до температуры зажигания. При этом в зависимости от соотношения определяющих параметров, максимум температуры может возникать либо в центре реакционного объема, либо между центром и поверхностью
Способ осуществляют следующим образом.
Предварительно смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - порошок алюминий. Из полученной смеси формируют путем прессования таблетки заданного размера и массы, например, диаметром 6-12 мм и массой 3-5 г. Начальная относительная плотность варьируется в пределах 60-70%).
Затем таблетки размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием из оксидной фазы на основе корунда и органического связующего.
Указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения. В процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава.
После выгрузки из центрифуги полученного сплава его последовательно выщелачивают от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывают дистиллированной водой и стабилизируют раствором 10% лимонной кислоты и 1% перекиси водорода.
Реакция синтеза инициируется на воздухе с помощью раскаленной электрическим током вольфрамовой спирали. Зона реакции распространяется по образцу во фронтальном режиме за счет сильно экзотермического взаимодействия исходных реагентов. Температура горения, согласно термодинамическому анализу, близка к температурам плавления интерметаллидной фазы. Окончание проведения процесса фиксировали по резкому падению температуры, например, с 2500°C до 1800°C и ниже в связи с прекращением процесса горения и началом охлаждения расплава. Обычно время процесса горения в синтезе с образованием интерметаллидного сплава в зависимости от массы сплавляемых образцов составляет 10-60 сек.
Дополнительная щелочная обработка этих интерметаллидных сплавов с целью увеличения поверхности расширяет круг областей их применения. В процессе СВС катализаторов и носителей при высокой температуре и малом времени синтеза (до нескольких секунд) образуются структуры с высокой дефектностью кристаллической решетки. После прохождения волны горения, в процессе остывания проходят постпроцессы - продолжение формирования структуры и состава активных структур катализаторов. В связи с этим условия охлаждения (скорость охлаждения может составлять сотни градусов в минуту) также способствуют образованию дефектной кристаллической решетки. Это могут быть дефекты Шоттки (с вакансиями или с присутствием в решетке иона примеси с большим или меньшим зарядом катиона), дефекты по Френкелю (вакансии в узлах и ионы в энергетически невыгодных позициях - междоузлиях).
Кроме точечных дефектов возможно образование одномерных и двухмерных дефектов кристаллов. В местах выходов дислокаций, а также в местах поверхностных точечных дефектов геометрическое расположение атомов катализатора и их энергетическое состояние отличается от их расположения на остальной поверхности. Межатомные расстояния и энергетическое состояние атомов в кристаллических катализаторах являются важными факторами, влияющими на их активность.
Изучение активности синтезированных катализаторов проводили на микропроточной каталитической установке в стационарном слое катализатора объемом 50 см3 по ТУ 2177-007-44912618-00 на прямогонной фракции 180-360°C дизельного топлива ЗАО «РНПК» с исходным содержанием сернистых соединений 9900 ррт при следующих условиях проведения эксперимента:
Р опыта = 3,5МПа,
V с = 1 час -1
Н2/сырье=300 н см 3/см3
Температура в реакторе = 250°С, 320°С, 350°С и 400°С,
Отбор проб катализата после выхода на режим:
Проба № 1 - через четыре часа,
Проба № 2 - за два часа до окончания опыта.
Пример 1. Смесь порошков оксида никеля - 9%, оксида молибдена- 35%, остальное - алюминий, подвергают сушке и запрессовывают в таблетки диаметром 12 мм и массой 3-3,5 г. Полученные таблетки помещают в графитовую форму, на внутреннюю поверхность которой предварительно наносят суспензию литой оксидной фазы на основе корунда и органического связующего - поливинилбутераля на спирту. Нанесенную форму высушивают при температуре 150°C не менее 2-х часов. Готовую и, заполненную таблетками графитовую форму помещают в центробежную установку, в которой вращением создают перегрузку 10-40g, после чего смесь воспламеняют инициирующей вольфрамовой электроспиралью. Высокая температура процесса (выше температуры плавления продуктов реакции на 2800-3000°C) приводит к образованию расплава состоящего из двух фаз, нижняя - многокомпонентного интерметаллидного сплава и верхняя - из оксида алюминия. Окончание проведения процесса фиксируется по падению температуры с 2500°C до 1800°C и ниже в связи с прекращением процесса горения и начала процесса охлаждения. Нижний интерметаллидный слиток на основе алюминидов никеля и молибдена подвергают размолу в течение 20-60 мин, после чего отбирают фракцию диаметром 0,5-3,5 мм, которую подвергают выщелачиванию 10% раствором едкого натра в течение 20 мин, полученный образец катализатора промывают дистиллированной водой, стабилизируют перекисью водорода и высушивают при температуре 90°С. Состав катализатора после выщелачивания алюминия: оксид никеля - 14%, оксид молибдена - 48%, остальное - оксид алюминия. Результаты испытаний катализатора в процессе обессеривания приведены в табл.1.
Таблица 1 | ||||||||||
№ | Наименование | Параметры опыта | ||||||||
п/п | показателей | Т=250°C | Т=320°C | Т=350°C | Т=400°C | Т=350°C | ||||
Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Прототип | ||
Остаточное | 7200 | 7580 | 74 | 46 | 65 | 33 | 190 | 288 | 1200 | |
содержание | ||||||||||
серы в | ||||||||||
гидрогенизате, | ||||||||||
ppm | ||||||||||
Степень | 27,3 | 23,4 | 99,2 | 99,5 | 99,3 | 99,7 | 98,0 | 97,1 | 87,8 | |
обессеривания, | ||||||||||
% мас. |
Пример 2. Условия проведения процесса аналогичны по примеру 1, перегрузка синтеза интерметаллидного сплава в центрифуге составляет 60g, выщелачивание проводится 10% раствором едкого кали в течение 20 мин. Состав катализатора: оксид никеля - 11%, оксид молибдена- 41%, остальное - алюминий. Результаты испытаний приведены в табл.2
Таблица 2 | ||||||||||
№ | Наименование | Параметры опыта | ||||||||
п/п | показателей | Т=250°C | Т=320°C | Т=350°C | Т=400°C | Т=350°C | ||||
Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Прототип | ||
Остаточное | 8100 | 8380 | 94 | 65 | 55 | 48 | 150 | 158 | 1200 | |
содержание | ||||||||||
серы в | ||||||||||
гидрогенизате, | ||||||||||
ppm | ||||||||||
Степень | 18,2 | 15,4 | 99,1 | 99,3 | 99,4 | 99,5 | 98,5 | 98,4 | 87,8 | |
обессеривания, | ||||||||||
% мас. |
Пример 3. Условия проведения процесса аналогичны по примеру 1, перегрузка сплавления интерметаллидного сплава в центробежной центрифуге составляет 10g, выщелачивание алюминия проводится 10% раствором едкого натра в течение 30 мин. С последующей стабилизацией раствором 10% лимонной кислоты. Состав катализатора после выщелачивания: оксид никеля 12%,оксид молибдена 47%, остальное оксид алюминия. Результаты испытаний катализатора приведены в табл.3.
Таблица 3 | ||||||||||
№ | Наименование | Параметры опыта | ||||||||
п/п | показателей | Т=250°C | Т=320°C | Т=350°C | Т=400°C | Т=350°C | ||||
Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Прототип | ||
Остаточное | 8960 | 9400 | 1520 | 1490 | 1480 | 1060 | 1210 | 1340 | 1200 | |
содержание | ||||||||||
серы | ||||||||||
в гидрогенизате, | ||||||||||
ppm | ||||||||||
Степень | 9,5 | 5,1 | 84,7 | 84,9 | 85,1 | 89,3 | 87,8 | 86,5 | 87,8 | |
обессеривания, | ||||||||||
% мас. |
Пример 4. Условия проведения процесса аналогичны по примеру 1, состав исходной смеси: оксид никеля 13%, оксид молибдена - 55%, остальное - алюминий подвергают сплавлению в центробежной центрифуге при перегрузке 60g, а выщелачивание проводится 20% раствором едкого натра в течение 120 мин. С последующей стабилизацией раствором 10% лимонной кислоты и перекисью водорода. Состав катализатора: оксид никеля - 17%, оксид молибдена - 66%, остальное оксид алюминия. Результаты испытания приведены в табл.4
Таблица 4 | ||||||||||
№ | Наименование | Параметры опыта | ||||||||
пп | показателей | Т=250°C | Т=320°C | Т=350°C | Т=400°C | Т=350°C | ||||
Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Проба № 1 | Проба № 2 | Прототип | ||
Остаточное | 8285 | 8745 | 92 | 68 | 56 | 31 | 130 | 307 | 1200 | |
содержание | ||||||||||
серы в | ||||||||||
гидрогенизате, | ||||||||||
ppm | ||||||||||
Степень | 16,3 | 11,7 | 99,1 | 99,3 | 99,4 | 99,7 | 98,7 | 96,9 | 87,8 | |
обессеривания, | ||||||||||
% мас. |
Таким образом, отличительным признаком предлагаемого изобретения является то, что для синтеза катализатора используют не сухие соли никеля и молибдена, а непосредственно сухие порошки оксидов этих металлов, а вместо пропиточного способа синтеза катализаторов с последующей кислотной обработкой и многостадийной промывкой и термообработкой, применяют технологию прямого получения интерметаллидного сплава методом самораспространяющегося высокотемпературного синтеза, с последующим выщелачиванием атомов алюминия и получением активного катализатора гидроочистки с наноструктурированной поверхностью созданной активными центрами оксидов молибдена и никеля.
Использование в предлагаемом способе метода СВС даже при получении катализатора, идентичного по химическому составу синтезированному традиционным методом, приводит к образованию отличной от него структуры, что позволяет рассматривать СВС-продукты, как новый класс катализаторов и носителей.
Класс B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний
Класс C10G45/08 в сочетании с хромом, молибденом или вольфрамом или их соединениями
Класс B01J21/02 бор или алюминий; их оксиды или гидроксиды