способ диффузионной сварки многослойного пакета из стекла и монокристаллического кремния

Классы МПК:B23K20/14 предотвращение или доведение до минимума доступа газа или использование защитных газов или вакуума при сварке
B23K20/22 с учетом свойств свариваемых материалов
Автор(ы):, , ,
Патентообладатель(и):Открытое акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" (ОАО АНПП "ТЕМП-АВИА") (RU)
Приоритеты:
подача заявки:
2012-02-17
публикация патента:

Изобретение может быть использовано при изготовлении полупроводниковых микромеханических устройств, например чувствительных элементов интегральных датчиков. Многослойный пакет из стекла и монокристаллического кремния сжимают с нормированным усилием и нагревают. Проводят изотермическую выдержку сжатого многослойного пакета при температуре выше температуры сварки. После охлаждения сжатого пакета до температуры ниже температуры сварки подают на сжатый пакет постоянное напряжение с последующим контролем тока до его прекращения. Техническим результатом является повышение точностных характеристик чувствительных элементов интегральных акселерометров за счет снижения сварочного напряжения в пакете, связанного с разницей коэффициентов температурного расширения соединяемых материалов, при сохранении его механической прочности.

Формула изобретения

Способ диффузионной сварки многослойного пакета из стекла и монокристаллического кремния, включающий его сжатие с нормированным усилием, нагрев, изотермическую выдержку и подачу на сжатый пакет постоянного напряжения, отличающийся тем, что изотермическую выдержку сжатого многослойного пакета осуществляют при температуре, выше температуры сварки, а подачу напряжения производят после охлаждения сжатого пакета до температуры ниже температуры сварки.

Описание изобретения к патенту

Изобретение относится к приборостроению и может применяться при изготовлении полупроводниковых микромеханических устройств, например, чувствительных элементов интегральных датчиков.

Наиболее близким к заявленному изобретению является способ [1], при котором свариваемые детали из полупроводника или металла и стекла нагревают до температуры сварки, прикладывают к ним постоянное напряжение для создания ионного тока диффузии между соединяемыми поверхностями и сдавливают их циклически.

Недостатком такого способа являются возникающие в материалах напряжения, которые уменьшают точность чувствительных элементов интегральных датчиков. Возникновение напряжений связано с различными коэффициентами линейного расширения полупроводника и стекла, и упругой деформацией от устранения первоначальной неплоскостности контактных поверхностей в пакете механическим нормированным прижимом.

Задачей, на решение которой направлено заявленное изобретение является снижение напряжений, возникающих в многослойном пакете стекла и монокристаллического кремния и, следовательно, повышение точностных характеристик интегральных датчиков.

Поставленная задача решается за счет того, что в способе диффузионной сварки многослойного пакета из стекла и монокристаллического кремния, включающем его сжатие с нормированным усилием, нагрев, изотермическую выдержку и подачу на сжатый пакет постоянного напряжения, согласно изобретению, изотермическую выдержку сжатого многослойного пакета осуществляют при температуре, выше температуры сварки, а подачу напряжения производят после охлаждения сжатого пакета до температуры, ниже температуры сварки.

Одним существенным отличием предложенного способа является то, что нагрев и изотермическая выдержка осуществляются при температуре, выше температуры сварки многослойного пакета из стекла и монокристаллического кремния, в результате чего, под действием нормированного усилия, при соприкосновении свариваемых поверхностей, в стекле возникают, в основном, пластические деформации, так как модуль Юнга стекла уменьшается с повышением температуры.

Еще одним существенным отличием предложенного способа является то, что диффузионная сварка многослойного пакета из стекла и монокристаллического кремния осуществляется при температуре ниже температуры сварки [2], в результате чего снижается температурный интервал остывания, что приводит к снижению напряжений, связанных с различными коэффициентами линейного расширения материалов пакета.

Пример реализации заявленного способа.

Производили диффузионную сварку чувствительных элементов линейных акселерометров, представляющих собой многослойный пакет стекло «пирекс 7059» - монокристаллический кремний КЭС-0,5 - стекло «пирекс 7059» [2]. Размер пакета 7×6×0,9 мм (длина-ширина-высота). Сдавленный с усилием 5 кН пакет нагревали до температуры 490°C, затем производили изотермическую выдержку три часа, после чего охлаждали до температуры 370°C и подавали на пакет напряжение 300 В, с последующим контролем тока через свариваемый пакет до его прекращения.

Производили диффузионную сварку чувствительных элементов линейных акселерометров с обратной связью, представляющих собой многослойный пакет стекло «С37-2» - монокристаллический кремний КЭС-0,5 - стекло «С37-2» [2]. Размер пакета 7×6×2,3 мм (длина-ширина-высота). Сдавленный с усилием 15 кН пакет нагревали до температуры 450°C, производили изотермическую выдержку три часа, затем охлаждали до температуры 400°C и подавали на пакет напряжение 350 В, с последующим контролем тока через свариваемый пакет до его прекращения.

Производили диффузионную сварку чувствительных элементов линейных акселерометров с обратной связью, представляющих собой многослойный пакет стекло «ЛК105» - монокристаллический кремний КЭС-0,5 - стекло «ЛК105». Размер пакета 7×6×2,3 мм (длина-ширина-высота). Сдавленный с усилием 15 кН пакет нагревали до температуры 460°C, производили изотермическую выдержку три часа, затем охлаждали до температуры 380°C и подавали на пакет напряжение 285 В, с последующим контролем тока через свариваемый пакет до его прекращения.

В результате применении предложенного способа механическая прочность соединения пакета осталась на уровне 20 МПа, возникающие при диффузионной сварке в стекле и монокристаллическом кремнии напряжения снизились, а температурный уход акселерометров уменьшился, в среднем, на 10-15%, за счет чего повысились точностные характеристики чувствительных элементов интегральных акселерометров.

Источники информации

1. Авторское свидетельство СССР № 1454612, МКП В23К 20/14, 1987 (прототип).

2. Хоменко Н.Н. Получение неразъемных соединений кремния с материалами. - Чернигов: ВСНТО, 1986.

Класс B23K20/14 предотвращение или доведение до минимума доступа газа или использование защитных газов или вакуума при сварке

соединение деталей из титана и стали диффузионной сваркой -  патент 2520236 (20.06.2014)
способ диффузионной сварки на воздухе с наложением циклической нагрузки -  патент 2503528 (10.01.2014)
способ изготовления детали из литейных никелевых сплавов жс32 и жс32моно -  патент 2494161 (27.09.2013)
способ сварки изделий из сплавов на основе никелида титана (варианты) -  патент 2478027 (27.03.2013)
способ изготовления слоистого композиционного материала титановый сплав-алюминид титана -  патент 2477203 (10.03.2013)
диффузионное соединение -  патент 2455138 (10.07.2012)
установка для диффузионной сварки -  патент 2397053 (20.08.2010)
способ диффузионной сварки в вакууме многослойных изделий из разнородных нержавеющих сталей -  патент 2387524 (27.04.2010)
способ изготовления оболочки -  патент 2380185 (27.01.2010)
способ изготовления диффузионной сваркой сотовых конструкций с тонкостенным заполнителем -  патент 2364481 (20.08.2009)

Класс B23K20/22 с учетом свойств свариваемых материалов

Наверх