способ определения шероховатости поверхности
Классы МПК: | G01B11/30 для измерения шероховатости или неровностей поверхностей |
Автор(ы): | Индукаев Константин Васильевич (RU), Игнатьев Павел Сергеевич (RU), Ромаш Елена Викторовна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") (RU) |
Приоритеты: |
подача заявки:
2011-12-28 публикация патента:
27.08.2013 |
Способ может быть использован для прецизионного контроля изделий в машиностроении и приборостроении. Способ реализуется интерференционным методом. На исследуемой поверхности выбирают несколько участков, фазовое изображение каждого из которых может быть получено на фотоприемнике микроскопа. Определяют фазовое изображение каждого участка, для чего при различных значениях фазы опорного пучка определяют не менее трех значений энергии, воспринятой каждым пикселем фотоприемника за время экспозиции, причем сдвиг фазы опорного пучка осуществляют путем изменения положения фазового модулятора. Для определения каждого значения воспринятой пикселем энергии получают зависимость освещенности пикселя от времени при изменении положения фазового модулятора и интегрируют полученную зависимость на интервале времени экспозиции. Интерпретируют фазовое изображение каждого участка и определяют шероховатость каждого участка с последующим усреднением шероховатости по всем участкам и получают шероховатость поверхности. В качестве фазового модулятора может быть использовано зеркало, выполненное с возможностью перемещения вдоль линии оптического пути опорного пучка. Технический результат - повышение точности определения шероховатости поверхности. 1 з.п. ф-лы, 1 ил.
Формула изобретения
1. Способ определения шероховатости поверхности интерференционным методом, заключающийся в том, что: на исследуемой поверхности выбирают несколько участков, фазовое изображение каждого из которых может быть получено на фотоприемнике микроскопа; определяют фазовое изображение каждого участка, для чего при различных значениях фазы опорного пучка определяют не менее трех значений энергии, воспринятой каждым пикселем фотоприемника за время экспозиции, причем сдвиг фазы опорного пучка осуществляют путем изменения положения фазового модулятора, а для определения каждого значения воспринятой пикселем энергии получают зависимость освещенности пикселя от времени при изменении положения фазового модулятора, и интегрируют полученную зависимость на интервале времени экспозиции; интерпретируют фазовое изображение каждого участка и определяют шероховатость каждого участка с последующим усреднением шероховатости по всем участкам и получают шероховатость поверхности.
2. Способ по п.1, отличающийся тем, что в качестве фазового модулятора используют зеркало, которое выполняют с возможностью перемещения вдоль линии оптического пути опорного пучка.
Описание изобретения к патенту
Изобретение относится к области диагностики поверхности твердого тела и может быть использовано для прецизионного контроля изделий в машиностроении и приборостроении.
В контексте данной заявки под шероховатостью поверхности понимается среднее арифметическое абсолютных значений отклонений профиля поверхности в пределах базовой длины. В основе способа определения шероховатости поверхности лежит интерференционный метод получения фазового изображения, интерпретация которого позволяет достоверно определить профиль поверхности.
Интерференционный метод получения фазового изображения в общем случае заключается в использовании когерентного монохроматического пучка света, который разделяют на два пучка, один из которых направляют к исследуемому объекту, а другой - к фазовому модулятору, например плоскому зеркалу. Первый пучок (далее - объектный пучок), отражаясь от объекта, получает информацию об объекте в виде смещения фазы по сечению пучка, которое обусловлено различной длиной оптического пути волн вследствие изменяющегося по площади объекта рельефа, сечение которого представляет собой профиль поверхности. Второй пучок (далее - опорный пучок) отражается от плоского зеркала и имеет неизменную фазу по сечению пучка. Оба пучка направляют на экран фотоприемника, где они образуют интерференционную картину (далее - интерферограмма).
Для получения фазового изображения объекта (или фазового портрета объекта) необходимо вычислить фазу объектного пучка на каждом пикселе экрана фотоприемника. Общеизвестным считается способ определения фазы объектного пучка, при котором требуются минимум три интерферограммы, позволяющие определить освещенность пикселя и полученные при различных значениях разности фаз объектного и опорного пучков.
Требуемое изменение разности фаз, как правило, получают сдвигом фазы опорного пучка (возможно также - объектного пучка), который осуществляют, например, путем изменения длины оптического пути опорного пучка при перемещении опорного зеркала. В этом случае измерения освещенности на пикселе оказываются разнесенными во времени (временная фазовая модуляция).
Однако существуют методики и одновременного получения нескольких интерферограмм, основанные в основном на разделении опорного или объектного пучка на идентичные пучки и направлении полученных пучков через различные фазовые модуляторы. В таком случае измерения освещенности на пикселе оказываются разнесенными в пространстве (пространственная фазовая модуляция).
Искомое значение фазы объектного пучка получают путем решения системы из трех или более уравнений:
где i - номер измерения,
- освещенность на пикселе ху в i-ом измерении,
- освещенность на пикселе ху, образованная объектным пучком (одинаковая для всех измерений),
Iib - освещенность, образованная опорным пучком в i-ом измерении (одинаковая для всех пикселей),
xy - фаза объектного пучка на пикселе ху (одинаковая для всех измерений),
i - фаза опорного пучка в i-ом измерении (одинаковая для всех пикселей).
Изложенное решение реализовано в конструкциях измерительных оптических систем, например, представленных в публикациях JP 2001059714 A, G01B 9/02, 06.03.2001 и US 20050046865 A1, G01B 9/02, 03.03.2005, и выбрано как прототип изобретения. Недостаткам данного решения является нечеткость полученного фазового изображения вследствие погрешности определения фазы, в результате чего профиль поверхности, который необходим для расчета шероховатости, определяется недостоверно.
Задачей изобретения является повышение точности определения шероховатости поверхности.
Для решения поставленной задачи предложен способ определения шероховатости поверхности интерференционным методом, заключающийся в том, что: на исследуемой поверхности выбирают несколько участков, фазовое изображение каждого из которых может быть получено на фотоприемнике микроскопа; определяют фазовое изображение каждого участка, для чего при различных значениях фазы опорного пучка определяют не менее трех значений энергии, воспринятой каждым пикселем фотоприемника за время экспозиции, причем сдвиг фазы опорного пучка осуществляют путем изменения положения фазового модулятора, а для определения каждого значения воспринятой пикселем энергии получают зависимость освещенности пикселя от времени при изменении положения фазового модулятора, и интегрируют полученную зависимость на интервале времени экспозиции; интерпретируют фазовое изображение каждого участка и определяют шероховатость каждого участка с последующим усреднением шероховатости по всем участкам и получают шероховатость поверхности.
В частном случае изобретения фазовый модулятор выполнен в виде зеркала, имеющего возможность перемещения вдоль линии оптического пути опорного пучка.
Технический результат, достигаемый изобретением, заключается в снижении количества и размеров спекл-структур на фазовом портрете участка поверхности, что позволяет повысить точность определения профиля участка поверхности. Другим техническим результатом является определения шероховатости поверхности большой площади.
Осуществление изобретения будет пояснено ссылкой на фигуру со схематическим изображением устройства для получения фазового портрета объекта, в частности, микроскопа.
Микроскоп содержит источник когерентного света (как правило - лазер) 1. Светоделитель 3, размещенный на оси лазерного пучка после поляризационного элемента 2, делит исходный пучок 4 света на два пучка - объектный пучок 5 и опорный пучок 6. Объектный пучок через объектив 7 направляется к участку 8 исследуемой поверхности 9 и, отражаясь от него, попадает на светоделитель 3, через который проходит, сохраняя направление. Опорный пучок направляется на фазовый модулятор 10, который в данном случае представлен плоским зеркалом 11, оснащенным пъезоприводом. Отражаясь от фазового модулятора, опорный пучок меняет направление на светоделителе 3 и совместно с объектным пучком через линзу 12 и поляризационный анализатор 13 попадает на экран фотоприемника 14, где оба луча образуют интерферограмму. Информация с фотоприемника 14 поступает в компьютер 15, который через генератор напряжения 16 соединен с фазовьм модулятором 10.
При перемещении фазового модулятора вдоль оптического пути опорного пучка происходит сдвиг фазы опорного пучка, вследствие чего интерферограмма меняет вид, т.е. изменяется освещенность пикселей экрана фотоприемника. Выполнение фазового модулятора в виде перемещающегося плоского зеркала является, однако, частным случаем изобретения.
В прототипе изобретения для определения фазы объектного пучка на пикселе осуществляют не менее трех измерений освещенности при различных фиксированных значениях фазы опорного пучка и одинаковом времени экспозиции. Последующие значения фазы опорного пучка получают путем сдвига фазы опорного пучка относительно первого значения фазы, являющегося стартовой точкой. Сдвиг фазы опорного пучка осуществляют перемещением фазового модулятора 10 на соответствующее расстояние, предпочтительно с последующим возвращением фазового модулятора в состояние, соответствующее стартовой точке. Далее решают систему уравнений (1) и находят фазу объектного пучка.
Проведение измерений освещенности при фиксированных значениях фазы опорного пучка приводит к существенной погрешности определения фазы объектного пучка, выражающейся в появлении на фазовом портрете значительного количества спекл-структур, имеющих при этом относительно большие размеры. Погрешность определения фазы объектного пучка в общем случае вызвана погрешностью определения освещенности и погрешностью требуемого перемещения фазового модулятора.
Для пояснения заявленного способа формулу (1) можно записать следующим образом:
где t - время экспозиции.
Поскольку в формулах (1) и (2) освещенность представляет собой энергию, воспринятую пикселем за единичное время, то энергия, воспринятая пикселем за время экспозиции, равна
или
Согласно заявленному способу в течение времени экспозиции фазовый модулятор перемещается, изменяя фазу опорного пучка на величину сдвига фазы. Следовательно, фаза опорного пучка становится функцией времени экспозиции
i= i(t),
а уравнение (4) принимает вид:
где
при этом интегрирование осуществляется на интервале времени экспозиции.
Таким образом, для определения энергии, воспринятой пикселем за время экспозиции, получают зависимость освещенности на пикселе от времени и интегрируют полученную зависимость на интервале времени экспозиции. Энергия, воспринятая пикселем от опорного пучка Eib(t), рассчитывается для соответствующих сдвигов фазы по соотношению (7) заранее и входит в уравнение (5) в виде константы.
Далее решают систему из не менее трех уравнений (5) и находят фазу объектного пучка. Поскольку в течение времени экспозиции освещенность определяют множество раз при различных значениях фазы опорного пучка, то случайные погрешности перемещения фазового модулятора и определения энергии, воспринятой пикселем за время экспозиции, усредняются.
Следует отметить, что освещенность не является независимо определяемой величиной, а рассчитывается исходя из соотношения (3), таким образом, в прототипе также определяют энергию, воспринятую пикселем или единичной его площадью. Сама энергия может быть вычислена через электрический заряд, накопленный на пикселе за время экспозиции и который может быть определен непосредственно.
Для получения наилучшего результата по изложенной выше методике должны быть определены все значения энергии, воспринятой пикселем фотоприемника, используемые для определения фазы объектного пучка.
Получив фазовое изображение участка поверхности, по известной для специалиста в данной области методике определяют профиль участка поверхности, а значит, и шероховатость участка поверхности. Однако участок поверхности, фазовое изображение которого может быть получено на фотоприемнике, имеет небольшие размеры вследствие конструктивных особенностей фазового микроскопа и не позволяет судить о величине шероховатости всей поверхности.
Для определения шероховатости всей поверхности исследуют несколько участков, в этих целях микроскоп снабжен перемещающимся столом 17. После определения шероховатости поверхности нескольких участков, полученные значения усредняют и получают искомую шероховатость исследуемой поверхности.
Класс G01B11/30 для измерения шероховатости или неровностей поверхностей