способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия

Классы МПК:C04B35/486 тонкая керамика
C04B35/626 получение или обработка порошков индивидуально или в шихте
C01B13/18 термическим разложением соединений, например солей или гидроксидов
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт химии твердого тела Уральского Отделения РАН (RU)
Приоритеты:
подача заявки:
2011-12-07
публикация патента:

Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов. Предлагается способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающий получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом. В исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина. Отжиг осуществляют при температуре 550-570°С. Способ является высоко экологичным, т.к. исключает необходимость сброса сточных вод в технологическом цикле. Технический результат изобретения - получение активных к спеканию нанопорошков, позволяющих изготовить высокоплотную керамику на их основе. 5 пр.

Формула изобретения

Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающий получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом, отличающийся тем, что в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 мас.% от содержания глицина и отжиг осуществляют при температуре 550-570°С.

Описание изобретения к патенту

Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.

Известен способ получения оксида циркония, стабилизированного оксидом иттрия, в котором для получения максимально гомогенного порошка в исходный раствор солей циркония и иттрия вводят аммиак, мочевину, карбонат аммония или аммоний углекислый кислый, предпочтительно мочевину, добиваясь рН более 7 (патент Японии 04-031359, МПК С04В 35/48, 1992 год).

Недостатком способа является необходимость многократной промывки осажденного гидроксида большим количеством дистиллированной воды и последующей утилизации маточных растворов, что увеличивает стоимость процесса и его продолжительность. В процессе сушки продукта происходит выделение большого количества газообразного аммиака.

Наиболее близким (прототип) к предлагаемому техническому решению является способ получения наноразмерного порошка оксида металла, в частности оксида циркония, стабилизированного оксидом иттрия, включающий приготовление исходной гомогенной смеси, содержащей по крайней мере одну водорастворимую соль соответствующего металла, в частности нитраты циркония и иттрия и водорастворимую самовоспламеняющуюся кислоту, в частности глицин, упаривание водной исходной смеси до получения промежуточного продукта с концентрацией компонентов, обеспечивающей самовозгорание, нагревание до температуры, инициирующей возгорание, выдержку при этой температуры с последующим отжигом, в случае использования нитратов, при температуре 600-700°С (патент США 5114702, МПК С01В 13/18, 1992 год).

Недостатками известного способа являются достаточно высокая температура отжига полученного на первой стадии продукта (600-700°С), а также недостаточно высокая плотность керамики на основе полученного известным способом порошка оксида (95% от теоретически возможной).

Таким образом, перед авторами стояла задача разработать способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, обеспечивающего получение более плотной керамики на его основе.

Поставленная задача решена в предлагаемом способе получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающем получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом, в котором в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийную соль карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина и отжиг осуществляют при температуре 550-570°С.

Из патентной и научно-технической литературы не известен способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, в котором в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийную соль карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина, а отжиг промежуточного продукта осуществляют при температуре значительно ниже, чем в известных способах.

Авторами предлагается способ получения нанодисперсного порошка оксида циркония, содержащего 1-20 вес.% оксида иттрия и/или оксида скандия, путем дополнительного введения в раствор, содержащий азотнокислые соли циркония, иттрия и/или скандия и глицина (Gly) в мольном соотношении к сумме катионов металла (Zr4+, Y 3+, Sc3+) от 1,55:1 до 2,3:1; карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина с последующим выпариванием исходного раствора при 160-250°С до воспламенения и отжигом полученного порошка при температуре не выше 570°С.

Исследования, проведенные авторами, выявили возможность снижения температуры отжига промежуточного продукта и увеличение плотности керамики на основе полученного оксида в случае дополнительного введения в исходный раствор наряду с глицином (Gly) карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминокислоты. В данном случае не только глицин, но и карбоновая кислота и/или аммонийная соль карбоновой кислоты или аминоуксусной кислоты образуют прочные хелатные комплексы с катионами Y3+ , Sc3+ ZrO2+. Образование дополнительных хелатных комплексов способствует в процессе упаривания и последующего возгорания смеси большему выделению при разложении карбонитратного комплекса паров воды, углекислого газа и элементарного азота, что и обусловливает снижение количества выделяемой энергии при самопроизвольной реакции горения и предотвращает рост кристаллитов получаемого продукта. Суммарное количество органического восстановителя обеспечивает полную конверсию оксидов азота в молекулярный азот, но, в тоже время, сохраняет режим самораспространяющегося синтеза. Присутствие в реакционной смеси избытка органического растворителя, содержащего смесь глицина и карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминокислоты, приводит к формированию на поверхности получаемого нанопорошка частиц углерода, окисление которых в процессе отжига позволяет снизить температуру отжига. Снижение температуры отжига до 550-570°С предотвращает уменьшение удельной поверхности порошка, что приводит к получению более плотной керамики на его основе.

Экспериментальные исследования, проведенные авторами, позволили определить оптимальные количественные соотношения исходных компонентов, полностью исключающие выделение оксидов азота, например, в соответствии со следующими реакциями:

0.97ZrO(NO3)2 +0.06Y(NO3)3+1.6H2N(CH2 )COOH+0,0286H3C6H5O7 ·H2O+(0.923-x)O2=(ZrO2) 0.97·(Y2O3)0,03+3.64N+(3.211-x)CO 2+3.943H2O+xC (5% лимонной

кислоты)

0.97ZrO(NO3)2+0.2Sc(NO 3)3+2,5H2N(CH2)COOH+0,15H 2N(CH2)COONH4+(3,075-x)O2 =(ZrO2)0.9·(Sc2O3 )0.1+5,2N+(5,3-x)CO2+6.85H2O+xC (7.4% аммония амино-уксуснокислого)

0.9ZrO(NO 3)2+0.1Y(NO3)3+0.1Sc(NO 3)3+1.6H2N(CH2)COOH+0,115NH 4C6H7O7+(1.119-x)O 2=(ZrO2)0.9·(Y2O 3)0,05·(Sc2O3) 0.05+4.115N+(3.89-x)CO2+4.623H2O+xC (20% аммония лимоннокислого однозамещенного)

Установлено, что отжиг полученных нанодисперсных и субмикронных порошков выше 570°С в 5-6 раз уменьшает удельную поверхность порошков, что приводит в дальнейшем к уменьшению плотности керамики, полученной на их основе. Сжигание реакционной смеси при температуре реакции менее 550°С также приводит к снижению удельной поверхности. Экспериментальным путем авторы подобрали оптимальное соотношение количества глицина и карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты к составу оксида, которое обеспечивает по окончании реакции горения оптимальное количество (2-8%) углерода. Превышение содержания карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты выше 20 масс.% от количества глицина увеличивает время выжигания углерода и риск укрупнения порошка. Снижение содержания карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты ниже 5 масс.% от количества глицина приводит к повышению температуры отжига.

Предлагаемый способ может быть осуществлен следующим образом. В водный раствор, содержащий цирконил азотнокислый, иттрий азотнокислый и/или скандий азотнокислый, взятые в соотношении Zr:(Y+Sc)=0,97:0,06-0,9:0,2; добавляют при перемешивании глицин из расчета 1,55-2,3 моль на 1г-атом суммарного содержания катионов металлов и дополнительно от 5 до 20 масс.% карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминоуксусной кислоты. Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160-250°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением летучих компонентов (углекислого газа, и азота) и воды в виде пара и формированием порошка стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550-570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный нанопорошок белого цвета, с высокой удельной поверхностью. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.

Пример 1.

Берут водный раствор, содержащий 200 г цирконила азотнокислого, 15,1 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,97:0,06; добавляют при перемешивании 107 г глицина из расчета 1,55 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 5,88 г лимонной кислоты (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 15,7 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.

Пример 2.

Берут водный раствор, содержащий 200 г цирконила азотнокислого, 22,196 г скандия азотнокислого и 26,42 иттрия азотнокислого, взятые в соотношении Zr:(Sc+Y)=0,9:0,1; добавляют при перемешивании 165,8 г глицина из расчета 2,3 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 8,3 г аммония лимоннокислого однозамещенного (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия-скандия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 14,6 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.

Пример 3.

Берут водный раствор, содержащий 200 г цирконила азотнокислого, 52,84 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,9:0,1; добавляют при перемешивании 115,3 г глицина из расчета 1,6 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 6,0 г аммония лимоннокислого однозамещенного (5,2 масс.% от массы введенного глицина) и 6 г лимонной кислоты (5,2 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 18,9 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,2% от теоретической) керамику.

Пример 4.

Берут водный раствор, содержащий 200 г цирконила азотнокислого, 15,1 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,97:0,06; добавляют при перемешивании 138 г глицина из расчета 2,0 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 6,9 г аммония аминоуксуснокислого (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 11,6 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.

Пример 5.

Берут водный раствор, содержащий 200 г цирконила азотнокислого, 22,196 г скандия азотнокислого и 26,42 иттрия азотнокислого, взятые в соотношении Zr:(Sc+Y)=0,9:0,1; добавляют при перемешивании 129,7 г глицина из расчета 1,8 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 26 г лимонной кислоты (20 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия-скандия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 14,0 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,0% от теоретической) керамику.

Таким образом, авторами предлагается способ получения порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия, обеспечивающий получение активных к спеканию нанопорошков, позволяющих получить высокоплотную керамику на их основе. Способ является высоко экологичным, т.к. исключает необходимость сброса сточных вод в технологическом цикле.

Класс C04B35/486 тонкая керамика

способ изготовления керамики на основе диоксида циркония -  патент 2513973 (20.04.2014)
способ получения циркониевой керамики -  патент 2506247 (10.02.2014)
способ изготовления керамических изделий на основе диоксида циркония -  патент 2494077 (27.09.2013)
способ изготовления заготовок керамических изделий -  патент 2491253 (27.08.2013)
способ получения пористого керамического материала -  патент 2476406 (27.02.2013)
способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы ivb -  патент 2467983 (27.11.2012)
шихта для керамического материала на основе оксидов циркония и алюминия и нитрида циркония -  патент 2455261 (10.07.2012)
оксид циркония и способ его получения -  патент 2442752 (20.02.2012)
высокочистые порошки и изготовленные из них покрытия -  патент 2436752 (20.12.2011)
способ получения микро- и нанопористой керамики на основе диоксида циркония -  патент 2417967 (10.05.2011)

Класс C04B35/626 получение или обработка порошков индивидуально или в шихте

способ получения композиционного керамического материала -  патент 2524061 (27.07.2014)
способ получения конструкционной алюмооксидной керамики -  патент 2522487 (20.07.2014)
способ получения кордиеритовой массы для технической керамики -  патент 2521873 (10.07.2014)
способ изготовления магнезиальнокварцевого проппанта -  патент 2515280 (10.05.2014)
способ изготовления керамики на основе диоксида циркония -  патент 2513973 (20.04.2014)
способ изготовления заготовок керамических изделий -  патент 2491253 (27.08.2013)
автоматизированная технологическая линия для непрерывного производства твердофазных композиционных материалов на основе сложных оксидов -  патент 2489255 (10.08.2013)
способ получения конструкционной алюмооксидной керамики -  патент 2453517 (20.06.2012)
способ получения порошков фаз кислородно-октаэдрического типа -  патент 2448928 (27.04.2012)
способ получения порошка цирконата лития -  патент 2440298 (20.01.2012)

Класс C01B13/18 термическим разложением соединений, например солей или гидроксидов

способ получения перовскитов -  патент 2440292 (20.01.2012)
способ обезвоживания осадка гидроксидов металлов при получении их оксидов -  патент 2433951 (20.11.2011)
способ получения сложного оксида металла на основе железа -  патент 2424183 (20.07.2011)
способ получения порошков оксидов металлов -  патент 2318723 (10.03.2008)
способ получения пленок на основе простых или сложных оксидов или их твердых растворов -  патент 2309892 (10.11.2007)
пламенный синтез и невакуумное физическое напыление -  патент 2300494 (10.06.2007)
способ получения оксидов металлов, их смесей и твердых растворов -  патент 2226498 (10.04.2004)
способ переработки кислородосодержащих соединений железа и производственная линия для его осуществления -  патент 2226178 (27.03.2004)
способ получения сложных оксидов металлов vb группы периодической системы элементов д.и. менделеева -  патент 2209769 (10.08.2003)
способ переработки кислородсодержащих соединений непереходных и переходных металлов -  патент 2071934 (20.01.1997)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх