газотурбинная установка
Классы МПК: | F01D25/14 кожухи, модифицированные для этих целей |
Автор(ы): | Крамаренко Виктор Григорьевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Дальневосточный завод энергетического машиностроения" (RU) |
Приоритеты: |
подача заявки:
2011-12-29 публикация патента:
20.09.2013 |
Изобретение относится к теплоэнергетическому машиностроению, в частности к конструкции турбины высокого давления газотурбинной установки. Турбина высокого давления содержит наружный кожух и торцевую стенку. Торцевая стенка включает верхнюю и нижнюю половины, соединенные между собой по фланцам крепежными элементами, а также уплотнительную обойму. Уплотнительная обойма выполнена с кольцевой проточкой, отверстием для подачи охлаждающей среды в кольцевую проточку и отверстиями для подачи охлаждающего газа из кольцевой проточки на крепежные элементы фланцев торцевой стенки, находящиеся в пространстве между торцевой стенкой и впускной вставкой. Изобретение позволяет повысить надежность газотурбинной установки и предотвратить тепловую деформацию корпуса турбины высокого давления. 6 ил.
Формула изобретения
Газотурбинная установка, содержащая турбину высокого давления, включающую наружный кожух, торцевую стенку, состоящую из верхней и нижней половин, соединенных между собой по фланцам крепежными элементами, уплотнительную обойму с кольцевой проточкой и отверстием для подачи охлаждающей среды в кольцевую проточку, отличающаяся тем, что в уплотнительной обойме дополнительно выполнены сквозные отверстия для подачи охлаждающего газа из кольцевой проточки на крепежные элементы фланцев торцевой стенки, находящиеся в пространстве между торцевой стенкой и впускной вставкой.
Описание изобретения к патенту
Изобретение относится к турбокомпрессорному машиностроению. Конструкции известных газотурбинных установок включают в себя компрессор и газовые турбины с камерами сгорания. Часть воздуха от компрессора поступает на охлаждение ротора и статора турбины. В качестве теплоизолирующего материала в корпусе турбины применена высокотемпературная каолиновая вата. Ее помещают в зазор между внутренней поверхностью корпуса турбины и наружными стенками впускной и выпускной вставок (с внутренней стороны в сварные тонкостенные кожуха, а также в местах установки обойм). Для получения равномерной температуры корпуса и его частей толщина изоляционного слоя выполнена переменной в различных частях корпуса и зависит от температуры рабочего тела в проточной части турбины (Производство азотной кислоты в агрегатах большой мощностью под редакцией В.М.Олевского, М.:«Химия», 1985 г., с.155-157). В качестве теплоизолирующего материала также используют другие волокнистые материалы.
Проблема заключается в том, что под воздействием высокой температуры волокна изоляционной ваты ломаются и становятся короткими. Такие короткие волокна легко осыпаются и выдуваются, что приводит к нарушению изоляции. Как результат, температура отдельных участков корпуса становится неравномерно повышенной, что, в свою очередь, вызывает деформацию корпуса. Неравномерный нагрев особенно возможен в местах разрыва сплошности изоляции, где из-за сложной геометрической формы корпуса или наличия крепежа невозможно наложить неразрывный теплоизолирующий мат.
Техническое решение, предлагаемое в изобретении, является усовершенствованием газотурбинных агрегатов ГТТ-12, КМА-2 и КМА-2М, которые применяются в технологическом процессе получения неконцентрированной азотной кислоты. В состав газотурбинного агрегата входит газотурбинная установка, состоящая из турбины высокого давления (ТВД) и турбины низкого давления (ТНД), осевой компрессор, нагнетатель нитрозного газа, а также паровая турбина (или электродвигатель).
Технической задачей заявляемого изобретения является предотвращение тепловой деформации корпуса ТВД и повышение надежности работы газотурбинной установки за счет эффективности охлаждения крепежа на фланцах верхней и нижней половин торцевой стенки в пространстве между торцевой стенкой и впускной вставкой, т.е. в местах, где невозможно уложить сплошную теплоизоляцию.
Газотурбинная установка содержит турбину высокого давления, включающую наружный кожух, торцевую стенку, состоящую из верхней и нижней половин, соединенных между собой по фланцам крепежными элементами, и уплотнительную обойму торцевой стенки с кольцевой проточкой и отверстием для подачи охлаждающей среды в кольцевую проточку.
Технический результат достигается за счет того, что в турбине высокого давления газотурбинной установки предусмотрено охлаждение зоны размещения крепежа внутри пространства между торцевой стенкой и впускной вставкой. Охлаждение обеспечивается тем, что в уплотнительной обойме торцевой стенки дополнительно выполнены сквозные отверстия для подачи охлаждающего газа из кольцевой проточки уплотнительной обоймы на крепежные элементы фланцев торцевой стенки, находящиеся в пространстве между торцевой стенкой и впускной вставкой.
Подача охлаждающего газа из кольцевой проточки через выполненные в уплотнительной обойме отверстия, т.е. отбор части охлаждающего газа из предусмотренного конструкцией канала охлаждения также устраняет необходимость изготовления и монтажа дополнительных трубопроводов, что существенно снижает трудозатраты.
Фиг.1. Вертикальное сечение верхней части турбины высокого давления в ГТТ-12.
Фиг.2. Увеличенный вид части турбины, представленной на фиг.1.
Фиг.3. Вид торцевой стенки в сборе.
Фиг.4. Вид торцевой стенки в разрезе.
Фиг.5. Увеличенный вид части торцевой стенки в разрезе, представленной на фиг.4.
Фиг.6. Сечение торцевой стенки с крепежом и теплозащитным экраном.
Выполнение дополнительных отверстий позволяет подать охлаждающий газ на фланцевый крепеж торцевой стенки, предотвращая тепловую деформацию фланцев торцевой стенки в частности и корпуса в целом, повышая надежность работы газотурбинной установки.
Газотурбинная установка состоит из турбины высокого давления (ТВД), приводящей во вращение нитрозный нагнетатель, и турбины низкого давления (ТНД), приводящей во вращение осевой компрессор.
Как представлено на фиг.1 и 2, корпус 1 ТВД крепится к среднему корпусу 2 и состоит из наружного кожуха 3 и соединенной с ним торцевой стенки 4. Внутри корпуса 1 ТВД размещена впускная вставка 5. Верхняя и нижняя половины торцевой стенки 4 и верхняя и нижняя половины впускной вставки 5 соединяются по горизонтальным фланцевым разъемам. Конструктивно наружный кожух 3 корпуса 1 ТВД одной стороной крепится к среднему корпусу 2 и другой стороной - к торцевой стенке 4. С другой стороны к торцевой стенке 4 приварена уплотнительная обойма 6 торцевой стенки (далее по тексту - "уплотнительная обойма"). В свою очередь, к противоположной стороне уплотнительной обоймы 6 приварена диафрагма 7. В уплотнительной обойме 6 на обращенной к диафрагме 7 стороне выполнена кольцевая проточка 8 и просверлено сквозное отверстие (не показано), через которое охлаждающий газ поступает в проточку 8. В диафрагме 7 выполнены сквозные отверстия 9, открывающиеся с одной стороны в полость кольцевой проточки 8 и с другой стороны в пространство рабочего диска ротора. Для подвода охлаждающего газа предусмотрен трубопровод 10.
В рабочем режиме для охлаждения можно использовать как технологический газ, отбираемый из технологического процесса, так и сжатый воздух, отбираемый из компрессора. Охлаждающий газ подается по трубопроводу 10 и далее через отверстие в уплотнительной обойме 6 поступает в кольцевую проточку 8, откуда через сквозные отверстия 9 проходит в пространство рабочего диска ротора, к лопаткам и в проточную часть турбины, смешиваясь с рабочим газом.
На внутреннюю поверхность наружного кожуха 3 и торцевой стенки 4 укладывают тепловую изоляцию 11, выполненную в форме матов из волокнистого теплоизоляционного материала (ТУ-6-11-388-76). Маты покрываются кремнеземистой тканью, на которую накладывается сетка или проволочное крепление. Наложение изоляционного материала особенно затруднено в местах нахождения крепежа, обеспечивающегося соединение верхней и нижней половин торцевой стенки по фланцевому разъему. В таких местах сложно добиться полного изолирования торцевой стенки от воздействия температуры, исходящей от впускной вставки по причине невозможности наложения сплошной теплоизоляции. Нарушение надлежащего изолирования приводит к выдуванию волокон теплоизоляционного материала и, как следствие, к сильному повышению температуры торцевой стенки в зоне внутреннего крепежа и ее термическим деформациям.
На фиг.3-5 показана торцевая стенка 4, состоящая из верхней 4А и нижней 4Б половин. Половины соединяются вместе по фланцам 12А и 12Б с помощью крепежа 13. На фигурах 3-5 показаны только отверстия под крепеж. Часть крепежа 13А расположена внутри пространства между торцевой стенкой 4 и впускной вставкой 5, остальная часть крепежа 13Б находится снаружи.
Для решения вышеуказанной задачи предлагается в уплотнительной обойме 6 дополнительно выполнить сквозные отверстия 14 (показано только одно), через которые охлаждающий газ из кольцевой проточки 8 будет также направляться на крепеж 13. Согласно предпочтительному варианту изобретения (фиг.6) участок с крепежом закрывается металлическим экраном 15, поверх которого укладывается выполненная из фетра и ткани теплоизолирующая подушка 16. Подушка закрепляется с помощью проволоки 17. Охлаждающий газ, после охлаждения участка с крепежом, выходит в пространство между теплоизоляцией на внутренней поверхности торцевой стенки и впускной вставкой и затем за счет подсасывания эвакуируется в проточную часть ТВД через зазоры между впускной вставкой и обоймой неподвижных лопаток.
Подача охлаждающего газа из предусмотренного конструкцией канала охлаждения позволяет понизить температуру в зоне крепежа на 150-200°С, исключая тем самым тепловую деформацию фланцев торцевой стенки в частности и самого корпуса ТВД в целом.
Класс F01D25/14 кожухи, модифицированные для этих целей