способ оптимизации процесса горения топлива
Классы МПК: | F23N3/04 действие отдельных клапанов или шиберов, управляемых с помощью термочувствительных элементов |
Автор(ы): | Дзантиев Сергей Шамильевич (RU), Билаонов Батраз Дударович (RU), Рутковский Александр Леонидович (RU), Зароченцев Владимир Михайлович (RU), Бигулов Артур Васильевич (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью Научно-Инновационное предприятие СКГМИ (ГТУ) "Стройкомплект-Инновации" ООО НИП СКГМИ (RU) |
Приоритеты: |
подача заявки:
2012-03-07 публикация патента:
20.09.2013 |
Изобретение относится к области теплоэнергетики. Способ оптимизации процесса горения включает подачу топлива и воздуха в горелочное устройство. Далее измеряют, контролируют и регулируют температурные параметры в горящем факеле. Измерение температуры в факеле осуществляют бесконтактно. Далее определяют точку с максимальной температурой вдоль продольной оси факела. В дальнейшем варьируют количество подаваемого на сжигание воздуха до достижения максимальной температуры в выбранной точке и цикл повторяют в случае изменения условий сжигания или состава топлива. Способ позволит повысить эффективность использования топлива, упростить регулирование процессом горения топлива, снизить погрешность измерения и уменьшить содержание окиси углерода в отходящих газах. 2 ил.
Формула изобретения
Способ оптимизации процесса горения, включающий подачу топлива и воздуха в горелочное устройство, измерение, контроль и регулирование температурных параметров в горящем факеле, отличающийся тем, что измерение температуры в факеле осуществляют бесконтактно, при этом определяют точку с максимальной температурой вдоль продольной оси факела, варьируют количество подаваемого на сжигание воздуха до достижения максимальной температуры в выбранной точке и цикл повторяют в случае изменения условий сжигания или состава топлива.
Описание изобретения к патенту
Изобретение относится к теплоэнергетике, в частности к оптимизации процесса горения топлива.
Известен способ автоматического управления и контроля котлоагрегата, включающий измерения расходов топлива и воздуха, содержания окиси углерода и кислорода, давления топлива и воздуха, разрежения в газовом тракте и формирование сигнала для управления вентилятором и дымососом, с помощью которых поддерживают постоянное содержание окиси углерода в продуктах сгорания в количестве 0,1-0,2% (см. патент РФ № 2300705, МПК9 F23N 1/00, опубл. 10.06.2007).
Недостатком способа является наличие дополнительных операций, а именно отбора газа, его охлаждения и анализа на содержание окиси углерода. Анализ осуществляют с помощью прибора - газоанализатора, что существенно усложняет и удорожает способ. Кроме того, все эти операции увеличиваю! продолжительности, анализа и снижают точность измерения, гак как любая топка работает под разрежением и поэтому в ней обязательно присутствует подсос воздуха, в связи с чем, концентрация окиси углерода в продуктах сгорания будет измерена с существенной ошибкой.
Известен способ автоматического регулирования режима горения в топке котла включающий измерение содержания окиси углерода в газовом тракте и корректировку количества подаваемого воздуха в горелки при отклонении концентрации СО от 0,1 - 0,2% (см. патент РФ № 2247900, МПК7 F23N 1/02, опубл. 10.03.2005).
Недостатком способа является низкая точность измерения концентрации окиси углерода, так как с помощью дымососа сложно выдержать точное соотношение «топливо-воздух».
Наиболее близким к заявляемому способу является способ контроля и управления горением топлива включающий подачу топлива и воздуха в горелочное устройство, измерение, контроль и регулирование температурных параметров в горящем факеле (см. патент РФ № 2357153, МПК9 F23N 5/18, опубл. 27.05.2009).
Недостатками способа являются, во-первых, то, что измерение температуры факела осуществляют косвенным путем, т.е. температуру замеряют вокруг факела, что приводит к значительной погрешности измерения. Во-вторых, сравнение отклонения температуры от нормы осуществляют с помощью эталона, а при отклонении от эталона корректируют условия сжигания. Понятно, что при изменении состава, условий сжигания или расхода топлива эталон должен изменяться, следовательно, необходимо его каждый раз корректировать, это существенно усложняет работу системы и в связи с этим поддерживать оптимальные условия сжигания затруднительно.
Задачей предлагаемого технического решения является повышение эффективности использования топлива, снижение ошибки измерения, упрощение регулирования процессом горения, а также снижение в отходящих газах содержания окиси углерода.
Решение технической задачи достигается тем, что в способе оптимизации процесса горения, включающем подачу топлива и воздуха в горелочное устройство, измерение, контроль и регулирование температурных параметров в горящем факеле, согласно изобретению, измерение температуры в факеле осуществляют бесконтактно, при этом определяю г точку с максимальной температурой вдоль продольной оси факела, варьируют количество подаваемого на сжигание воздуха до достижения максимальной температуры в выбранной точке и цикл повторяют в случае изменения условий сжигания или состава топлива.
Данный способ позволит существенно повысить эффективность использования топлива, упростить регулирование процессом горения топлива, снизить погрешность измерения и уменьшить содержание окиси углерода в отходящих газах.
Сущность способа поясняется графиками, где на фиг.1 приведена зависимость температуры факела от расхода воздуха, на фиг.2 - зависимость концентрации СО от расхода воздуха.
Пример осуществления способа.
В горелочное устройство подают 0,5 кг топлива следующего состава: Н2=2%, CO=18% и СН 4=80% и воздух с температурой 20°С.Осуществляют измерение температуры бесконтактным методом вдоль продольной оси факела, например, оптическим радиационным пирометром и, находят точку с максимальной температурой (см. фиг.1). Затем варьируют количество подаваемого на сжигание воздуха до достижения наибольшей температуры в выбранной точке факела. На графике видно, что максимальная температура факела достигается при соотношении «газ-воздух» 1:15, т.е. для полного сгорания 0,5 кг данного топлива необходимо 7,5 кг воздуха. Положение оптимума будет смещаться при изменении расхода топлива, его состава или условий сжигания. Поэтому такой цикл повторяют непрерывно при изменении условий сжигания или состава топлива.
Проведенные исследования показали, что при осуществлении способа происходит существенное снижение СО в продуктах сгорания по сравнению с прототипом (см. фиг.2). Это связано с тем, что при использовании способа-прототипа на выходе факела остается достаточное количество СО, т.к. сжигание производится в области, левее температурного максимума. В заявленном способе сжигание производится постоянно при оптимальном расходе воздуха. При этом концентрация СО стремится к нулю именно при этом расходе воздуха. Реализация заявленного способа позволит снизить токсичность продуктов сгорания и улучшит экологическую обстановку в зоне выбросов. Также снизиться расход топлива в результате его полного дожигания.
Использование предлагаемого способа по сравнению с прототипом позволит существенно повысить эффективность использования топлива, упростить регулирование процессом горения топлива, снизить погрешность измерения и уменьшить содержание окиси углерода в отходящих газах.
Класс F23N3/04 действие отдельных клапанов или шиберов, управляемых с помощью термочувствительных элементов