способ упрочнения пористой кальцийфосфатной керамики

Классы МПК:C04B35/447 на основе фосфатов
C04B41/83 высокомолекулярные соединения
A61L27/12 фосфорсодержащии материалы, например апатит
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (RU)
Приоритеты:
подача заявки:
2012-02-29
публикация патента:

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения упрочненных пористых композиционных материалов на основе гидроксиапатита и трикальцийфосфата пористую керамическую матрицу кальцийфосфатной керамики с соотношением Са/Р от 1,5 до 1,67 пропитывают 1-5%-ным раствором среднемолекулярного или высокомолекулярного хитозана в 8%-ной уксусной кислоте при остаточном давлении от 0,1 до 0,3 Па с выдержкой от 10 до 30 минут и последующей сушкой при комнатной температуре в течение до 24 часов. Изобретение позволяет повысить прочность композиционного материала в 8-9 раз. 3 пр., 1 табл.

Формула изобретения

Способ упрочнения пористой кальцийфосфатной керамики, заключающийся в пропитке пористой керамической матрицы из кальцийфосфатной керамики с соотношением Са/Р от 1,5 до 1,67 растворами полимеров под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин с последующей сушкой композиции в течение до 24 ч, отличающийся тем, что в качестве растворов полимеров используют 1-5%-ные растворы среднемолекулярного и высокомолекулярного хитозана в 8%-ной уксусной кислоте.

Описание изобретения к патенту

Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Применение кальцийфосфатной керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточных прочностных характеристик и трещиностойкости. Поскольку естественная костная ткань является композиционным материалом, состоящим из гидроксиапатита, коллагена и других белков, то значительные перспективы для повышения механических свойств кальцийфосфатной керамики, предназначенной для изготовления костных имплантатов, имеет принцип формирования композиционных структур.

Известна работа [Komlev V.S., Barinov S.M., Rustichelli F. Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation. // J. Mat. Sci. 2003. V.22. P.1215-1217.], в которой получали композиционные материалы, пропитывая пористый керамический матрикс на основе гидроксиапатита растворами полимеров - желатина и поливинилового спирта (ПВС). Показано, что при пропитке матриксов с пористостью 50% растворами желатина или ПВС концентрации 10% прочность при растяжении увеличивалась в 5 и в 3 раза, соответственно. Недостатками данного способа являются использование ПВС, который не проявляет биологической активности, не подвергается биодеградации. Желатин получают из костей животных, поэтому он может содержать опасные для человека факторы-возбудители различных заболеваний.

Известно [Nakahira A., Tamai М., Miki S. Fracture behavior and biocompatibility evaluation of nylon-infiltrated porous hydroxyapatite // J. Mat. Sci. 2002. V.37. P.4425-2230] влияние пропитки нейлоном ГА каркаса с пористостью 54%: после пропитки коэффициент трещиностойкости увеличивается от 0,4 до 1,65 МПа·м1/2. Однако нейлон, как и ПВС не подвергается биодеградации в организме.

Наиболее близким к предлагаемому изобретению является способ [С1 2297249 RU A61L 27/10. Способ получения композиционного материала для заполнения костных дефектов. Комлев B.C., Баринов С.М. (Институт физико-химических проблем керамических материалов РАН (RU)). - патент РФ № 2297249], сущность которого состоит в пропитке пористой керамической матрицы из кальцийфосфатной керамики с соотношением Ca/Р от 1,5 до 1,67 растворами коллагена, желатина и поливинилового спирта концентрацией от 4 до 10% под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин. при температуре раствора от 10 до 75°С с последующей сушкой композиции в течение до 24 ч, при этом прочность материала возрастает в 5-6 раз. Недостатком данного способа является относительно низкая прочность полученных композиционных материалов, а также использование материалов (желатина и коллагена), полученных из костей и шкур млекопитающих, которые могут содержать опасные для человека факторы различных заболеваний.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа упрочнения пористой керамики растворами хитозана.

Техническим результатом изобретения является повышение прочности композиционных материалов в 8-9 раз, а также снижение риска заражения опасными для человека инфекциями в результате использования среднемолекулярного и низкомолекулярного хитозана.

Технический результат достигается тем, что в способе упрочнения пористой кальцийфосфатной керамики пропиткой полимерами, заключающемся в пропитке пористой керамической матрицы из кальцийфосфатной керамики с соотношением Ca/Р от 1,5 до 1,67 растворами полимеров под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин с последующей сушкой композиции в течение 24 часов, согласно изобретению, в качестве растворов полимеров используют 1-5% растворы среднемолекулярного и 0,5-2,5% растворы высокомолекулярного хитозана в 8% уксусной кислоте.

Сущность изобретения состоит в повышении прочности кальцийфосфатного материала в результате пропитки его растворами хитозанов в 8-9 раз. Повышение прочности связано с более эффективным залечиванием микродефектов керамики растворами хитозанов по сравнению с растворами коллагена и желатина.

Пример 1. Образцы пористой керамики из гидроксиапатита (Ca/Р=1,67) подвергали инфильтрации в 1, 2,5 и 5%-ных растворах среднемолекулярного хитозана в 8% растворе уксусной кислоты под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора составляла 50°С. Затем полученные образцы извлекали из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 20 часов при комнатной температуре. Прочность полученных образцов - 8,5 МПа.

Пример 2. Образцы пористой керамики из трехкальциевого фосфата (Ca/Р=1,5) подвергали инфильтрации в 1, 2,5 и 5%-ных растворах среднемолекулярного хитозана в 8% растворе уксусной кислоты под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора составляла 70°С. Затем полученные образцы извлекали из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 20 часов при комнатной температуре. Прочность полученных образцов - 8,9 МПа.

Пример 3. Образцы пористой керамики из гидроксиапатита (Ca/Р=1,67) подвергали инфильтрации в 1, 2,5 и 5%-ных растворах высокомолекулярного хитозана в 8% растворе уксусной кислоты под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора составляла 60°С. Затем полученные образцы извлекали из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 20 часов при комнатной температуре. Прочность полученных образцов - 9,2-9,5 МПа.

В таблице 1 приведены свойства композиционных материалов, полученных при различных режимах процесса. Пропитка керамики полимером приводит к повышению прочности до 9 раз. Эффект повышения прочности зависит от вида хитозана, а также от технологических условий эксперимента. При уровне вакуума менее ОД Па резко снижается пористость матрицы, а при уровне более 3,0 Па не происходит существенного упрочнения материала. При концентрации раствора биополимера менее 1% не достигается повышение прочности, а при концентрации более 5% инфильтрация полимера затруднена. При температуре раствора ниже 50°С процесс пропитки не реализуем из-за резкого увеличения вязкости раствора, а при температуре выше 70°С происходит частичная деструкция хитозана, сопровождающаяся изменением окраски раствора и изменением вязкости. Длительность сушки 24 часа вполне достаточна для удаления воды из композиционного материала.

способ упрочнения пористой кальцийфосфатной керамики, патент № 2494076

Класс C04B35/447 на основе фосфатов

способ получения керамики на основе ортофосфатов редкоземельных элементов -  патент 2509069 (10.03.2014)
способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью -  патент 2475461 (20.02.2013)
способ подготовки шихты для получения керамического биодеградируемого материала -  патент 2456253 (20.07.2012)
способ получения пористых гидроксиапатитовых гранул -  патент 2395476 (27.07.2010)
способ изготовления заготовок керамических изделий -  патент 2391318 (10.06.2010)
способ приготовления шихты для керамического материала на основе карбонатгидроксиапатита -  патент 2391317 (10.06.2010)
способ получения керамического биодеградируемого материала, состоящего из пирофосфата кальция и трикальцийфосфата -  патент 2391316 (10.06.2010)
способ получения керамики на основе гидроксиапатита, содержащего оксид цинка -  патент 2372313 (10.11.2009)
керамическая масса для изготовления керамических плиток -  патент 2318777 (10.03.2008)
способ изготовления гидроксиапатитовой керамики с бимодальным распределением пор -  патент 2303580 (27.07.2007)

Класс C04B41/83 высокомолекулярные соединения

Класс A61L27/12 фосфорсодержащии материалы, например апатит

материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ получения карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека -  патент 2526191 (20.08.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
отверждаемый биокомпозиционный материал для замещения костных дефектов -  патент 2508131 (27.02.2014)
остеогенный биорезорбируемый материал для замещения костных дефектов и способ его получения -  патент 2504405 (20.01.2014)
биоматериалы на основе фосфата кальция -  патент 2501571 (20.12.2013)
способ получения нанокристаллического кремнийзамещенного гидроксиапатита -  патент 2500840 (10.12.2013)
способ получения канафита -  патент 2499767 (27.11.2013)
пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани -  патент 2497548 (10.11.2013)
Наверх