способ получения многослойного покрытия для режущего инструмента
Классы МПК: | C23C14/06 характеризуемые покрывающим материалом C23C14/24 вакуумное испарение |
Автор(ы): | Табаков Владимир Петрович (RU), Чихранов Алексей Валерьевич (RU), Власов Станислав Николаевич (RU), Романов Александр Александрович (RU), Горностаев Дмитрий Васильевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2012-07-03 публикация патента:
10.10.2013 |
Изобретение относится к способу нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15 - 93,35, цирконий 6,0 - 10,0, кремний 0,65 - 0,85, затем - промежуточный слой из карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15 - 93,35, цирконий 6,0 - 10,0, кремний 0,65 - 0,85 и верхний - из нитрида соединения титана и циркония при их соотношении, мас.%: титан 85,0 - 91,0, цирконий 9,0 - 15,0. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними. Нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов. Изобретение позволяет повысить работоспособность режущего инструмента. 1 табл.
Формула изобретения
Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15 - 93,35, цирконий 6,0 - 10,0, кремний 0,65 - 0,85, промежуточный - из карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15 - 93,35, цирконий 6,0 - 10,0, кремний 0,65 - 0,85, а верхний - из нитрида соединения титана и циркония при их соотношении, мас.%: титан 85,0 - 91,0, цирконий 9,0 - 15,0, причем нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними, при этом нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов.
Описание изобретения к патенту
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.
Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 123 с.).
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе наносимое покрытие не обеспечивает такой же высокой эффективности при работе режущего инструмента с этим покрытием в условиях прерывистого резания, в частности при фрезеровании, как при непрерывном резании.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, раскрытый в описании к патенту на полезную модель RU 97082 U1, принятый за прототип.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью, а следовательно, трещиностойкостью и низкими сжимающими остаточными напряжениями. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.
Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокими твердостью и контактными характеристиками, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с высокими адгезионными свойствами. Кроме того, увеличение твердости нижнего слоя покрытия также способствует дополнительному снижению интенсивности износа РИ с многослойным покрытием. Промежуточный слой должен выполнять следующие функции. Во-первых, обеспечивать повышение прочности сцепления слоев за счет его формирования из элементов верхнего и нижнего слоев. Во-вторых, иметь высокие твердость и сжимающие остаточные напряжения для снижения интенсивности износа и трещинообразования в покрытии при прерывистом резании. В-третьих, способствовать повышению трещиностойкости всего покрытия за счет появления дополнительных границ между слоями.
Технический результат - повышение работоспособности РИ.
Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15-93,35, цирконий 6,0-10,0, кремний 0,65-0,85; промежуточный - из карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 89,15-93,35, цирконий 6,0-10,0, кремний 0,65-0,85; верхний - из нитрида соединения титана и циркония при их соотношении, мас.%: титан 85,0-91,0, цирконий 9,0-15,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними, причем нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов.
Такая структура наносимого покрытия позволяет получить высокие остаточные напряжения и твердость из-за наличия в покрытии промежуточного слоя. При этом нижний и промежуточный слои обладают высокой твердостью и трещиностойкостью из-за дополнительного легирования материала слоев покрытий и наличия в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.
Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. Кроме того, из-за недостаточной прочности сцепления с инструментальной основой и слоев внутри многослойного покрытия возможно разрушение последнего в результате адгезионно-усталостных явлений на контактных площадках. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин и высокие сжимающие напряжения. Слои покрытия должны обладать также высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.
Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.
Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также трехслойное покрытие по предлагаемому способу.
Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. Используются расположенные противоположно друг другу первый и второй составные катоды из титана и циркония, и третий катод из сплава титана и кремния, расположенный между ними. Камеру откачивают до давления 6,65 10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа азота включают все три катода и осаждают нижний слой покрытия TiZrSiN толщиной 2,0 мкм. Промежуточный слой покрытия TiZrSiCN толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенных трех катодах при подаче реакционного газа, состоящего из смеси азота и ацетилена (60% азота и 40% ацетилена (мас.)). Верхний слой покрытия TiZrN толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А, включенных первом (из титана и циркония) и втором (из титана и циркония) катодах и подаче реакционного газа азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.
Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г.Остаточные напряжения определяли на рентгеновском дифрактометре «ДРОН-3М» с использованием фильтрованного СuК -излучения.
Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S = 0,4 мм/зуб, глубина резания t= 1,5 мм, ширина фрезерования В=20 мм. За критерий износа была принята величина фаски износа по задней поверхности h3=0,4 мм.
В табл.1 приведены результаты испытаний РИ с полученными покрытиями.
Таблица 1 | ||||||||||||
Результаты испытаний РИ с покрытием | ||||||||||||
Материал покрытия | Химический состав слоев покрытия (соотношение металлических компонентов), % мас. | Микротвердость, ГПа | Остаточное напряжения, МПа | Стой кость | Приме чание | |||||||
1 слой | 2 слой | 3 слой | ||||||||||
Ti | Si | Zr | Ti | Si | Zr | Ti | Zr | |||||
TiN | - | 29,2 | -775 | 45 | Ана лог | |||||||
TiSiZr-TiSiZrN-TiSiN | 85,62 | 0,38 | 14,0 | 85,25 | 0,75 | 14,0 | 99,44 | 0,56* | 38,8 | -1238 | 296 | Прото тип |
TiZrSiN-TiZrSiCN-TiZrN | 93,25 | 0,75 | 6,0 | 93,25 | 0,75 | 6,0 | 91,0 | 9,0 | 42,9 | -1494 | 326 | |
91,35 | 0,65 | 8,0 | 91,35 | 0,65 | 8,0 | 88,0 | 12,0 | 43,8 | -1591 | 374 | ||
91,25 | 0,75 | 8,0 | 91,25 | 0,75 | 8,0 | 88,0 | 12,0 | 44,6 | -1622 | 388 | ||
91,15 | 0,85 | 8,0 | 91,15 | 0,85 | 8,0 | 88,0 | 12,0 | 43,7 | -1584 | 369 | ||
89,25 | 0,75 | 10,0 | 89,25 | 0,75 | 10,0 | 85,0 | 15,0 | 42,9 | -1472 | 328 | ||
Прим.: * - содержание кремния в верхнем слое покрытия |
Как видно из приведенных в таблице 1 данных, стойкость пластин с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,10-1,31 раза.
Класс C23C14/06 характеризуемые покрывающим материалом
Класс C23C14/24 вакуумное испарение