способ определения дисперсного состава капель в факеле распыла форсунки
Классы МПК: | G01N15/12 счетчики Коултера |
Автор(ы): | Ишматов Александр Николаевич (RU), Ворожцов Борис Иванович (RU), Архипов Владимир Афанасьевич (RU), Жуков Александр Степанович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук (ИПХЭТ СО РАН) (RU) |
Приоритеты: |
подача заявки:
2012-05-22 публикация патента:
10.10.2013 |
Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с последующим дисперсным анализом частиц сухого остатка. Распыление раствора определенной концентрации проводят в герметичной камере с заданными условиями по концентрации паров исследуемой жидкости. Для повышения скорости получения контрольных образцов пробоотбор осуществляют при прокачивании выдержанного в камере аэрозоля через электрофильтр на осадительные электроды. Полученный положительный эффект, подтвержденный экспериментально измерением дисперсности ультразвукового распылителя, заключается в возможности восстанавливать реальную функцию распределения капель в факеле форсунки по функции распределения частиц их солевого остатка. Техническим результатом изобретения является расширение диапазона измеряемых частиц, а также повышение точности и информативности существующих методик исследования. 4 ил.
Формула изобретения
Способ определения дисперсного состава капель в факеле распыла форсунки, включающий распыление раствора неиспаряемой примеси в исследуемой жидкости с последующим дисперсным анализом частиц сухого остатка, отличающийся тем, что распыление раствора проводят в герметичной камере, а пробоотбор осуществляют при прокачивании выдержанного в камере аэрозоля через электрофильтр на осадительные электроды, начальную относительную массовую концентрацию растворенного вещества в растворе Cm определяют из соотношения
,
в герметичной камере создают пары исследуемой жидкости с концентрацией C^, которую выбирают из соотношения
время выдержки аэрозоля в камере определяют по соотношению
а дисперсный состав первичных капель определяют по формуле
где - равновесная относительная массовая концентрация примеси в растворе;
Cs - равновесная концентрация паров растворителя над каплей;
D'AB - коэффициент диффузии растворенного вещества в растворе;
d - плотность раствора;
DAB - коэффициент диффузии паров растворителя в воздухе;
D - диаметр максимальных по размеру капель, ожидаемых в распыле;
g - ускорение свободного падения;
H - высота нижней границы распыла;
µg - коэффициент динамической вязкости воздуха;
D1 - диаметр начальной капли;
D2 - эквивалентный диаметр конечной частицы;
imp - плотность растворенного вещества.
Описание изобретения к патенту
Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом.
При проведении экспериментальной отработки устройств тонкодисперсного распыления жидкостей и исследования процессов формирования жидкокапельных сред основной задачей является определение дисперсного состава капель в факеле распыла. Известны способы определения размеров жидких аэрозольных частиц, основанные на улавливании капель иммерсионной средой [1]. Однако создание каплеуловителя обусловлено рядом требований: он должен обеспечивать отбор проб по всему радиусу факела, быть достаточно компактным, допускать варьирование времени экспозиции, исключать доступ капель к пробоотборной пластине до и после отбора пробы, предотвращать вторичное дробление капель и попадания брызг, образующихся при ударе капель о поверхность элементов устройства [1, 2]. Эти методы являются косвенными и не дают объективной оценки степени дисперсности распыления жидкости во всем объеме факела, к тому же проведение пробоотбора требует некоторого времени, что является существенным недостатком, т.к. за это время размеры первоначальных капель могут измениться вследствие испарения.
Также известен метод парафинового моделирования [3]. Метод в своем роде уникален, поскольку позволяет оперировать не с выборочной пробой, а со всем множеством капель, формирующихся при распылении. Вместо жидкости распыляют расплавленный парафин, свойства (плотность, вязкость, поверхностное натяжение) которого можно промоделировать в некоторых пределах, нагревая его до определенной температуры. Вылетающие частицы быстро охлаждаются, при этом влияние испарения минимально, поэтому все их можно уловить. Из-за своей сложности его повседневное применение ограничено, но может считаться эталонным.
Наиболее близким по технической сущности к предлагаемому и принятому за прототип является способ определения дисперсности капель распыла, основанный на исследовании солевого остатка [4], образующегося при распылении раствора NaCl в среду с относительной влажностью 50% с последующим испарением капель и формированием кристаллов соли.
К недостаткам принятого за прототип способа можно отнести следующее:
1. Распределение первоначальных капель по размерам приравнивают к распределению частиц солевого остатка, что обуславливает погрешность определения размеров капель, так как размер солевого остатка всегда меньше первоначальной капли.
2. Не оценивается морфология частиц сухого остатка, которая может быть различной в зависимости от условий испарения капель.
3. Не учитывается условие полного испарения капель до их осаждения на пробоотборную пластину, что обуславливает погрешность в определении функции распределения частиц, т.к. результаты измерений могут содержать информацию о размерах испарившихся в воздухе мелких частицах и размерах «солевого» следа капель, осевших на пробоотборную пластину.
4. Требуется значительное время для проведения отбора капель. Целью настоящего изобретения является возможность оперативно оценивать размеры первоначальных капель в факеле распыла форсунки по их сухому остатку с учетом процентного содержания неиспаряемого вещества в капле. Тем самым достигается расширение диапазона измеряемых частиц, а также повышается точность и информативность существующих методик исследования.
Технический результат изобретения достигается тем, что:
разработан способ определения дисперсного состава капель в факеле распыла форсунки, включающий распыление раствора неиспаряемой примеси в исследуемой жидкости с последующим дисперсным анализом частиц сухого остатка. Распыление раствора проводят в герметичной камере, а пробоотбор осуществляют при прокачивании выдержанного в камере аэрозоля через электрофильтр на осадительные электроды. При этом начальную относительную массовую концентрацию растворенного вещества в растворе (Ñm) определяют из соотношения
где - равновесная относительная массовая концентрация примеси в растворе.
В герметичной камере создают пары исследуемой жидкости с концентрацией C , которую выбирают из соотношения
где Cs - равновесная концентрация паров растворителя над каплей, кг/м3;
- коэффициент диффузии растворенного вещества в растворе, м2/с;
d - плотность раствора, кг/м3;
DAB - коэффициент диффузии паров растворителя в воздухе, м2/с;
D - диаметр максимальных по размеру капель ожидаемых в распыле, м;
g - ускорение свободного падения, м/с2;
H - высота нижней границы распыла, м;
µ g - коэффициент динамической вязкости воздуха, Па·с.
Время выдержки аэрозоля в камере определяют по неравенству
а дисперсный состав первичных капель определяют по формуле
где D1 - диаметр начальной капли, м;
D2 - эквивалентный диаметр конечной частицы, м;
imp - плотность растворенного вещества, кг/м 3.
Полученный положительный эффект изобретения связан с тем, что впервые в предлагаемом методе перерасчет истинных размеров капель осуществляется по формуле (4) через диаметры частиц сухого остатка. А с целью повышения скорости получения контрольных образцов для пробоотбора применяется электрофильтр, осадительные электроды которого используются в качестве пробоотборников. Принцип осаждения основан на методах электростатической газоочистки [5].
Формула (1) обусловлена требованиями удаленности концентрации примеси от границы насыщения раствора. Условие (2) с одной стороны обусловлено требованиями формирования сплошных солевых частиц для точного определения массы солевого остатка по его форме, т.к. в случае наличия в теле частицы неоднородностей оценить ее массу проблематично, а с другой - требованиями полного испарения капель при их осаждении. Формирование сплошных частиц определяется скоростью испарения и диффузией растворенного вещества в капле по отношению их характерных времен из условия [6]:
где t1 - характерное время диффузии растворенного вещества в объеме капли, с;
t 2 - характерное время испарения растворителя с поверхности капли, с.
А условие полного испарения капель при их осаждении имеет вид:
где t3 - характерное время гравитационного осаждения капли, с.
Условие полного испарения капель при их осаждении является важным, поскольку очевидно, если формирование частиц сухого растворенного остатка не успевает проходить в воздухе, то их форма может быть искажена в результате растекания испаряющейся жидкой капли, осевшей на предметную пластину.
В соответствии с [7, 8]:
Подставив (7) и (8) в (5), (8) и (9) в (6) получим формулу (2), с помощью которой подбираются условия в экспериментальной камере. В частности, для распыления водных растворов этим условием будет концентрация водяных паров. Температурный фактор в приведенных выше уравнениях учитывается переменными: DAB, CS, С , , значения которых в зависимости от температуры будет различным [9].
Время выдержки (3) аэрозоля в камере получено из условия полного испарения всех капель при их неосаждении на дно аэрозольной камеры
t2<t<t 3.
Форма частиц может отличаться от сферической, поэтому их размер выражается через диаметр эквивалентной сферы Da, площадь которой равна площади проекции частицы (фиг.1). А оценка степени уменьшения аэрозольных частиц вследствие испарения определяется из условия равенства массового содержания неиспаряемой примеси в капле первоначального раствора и частицы после полного испарения растворителя:
где m - масса примеси в капле раствора; V1, V2 - объем капли и примеси в ней, соответственно.
Уравнение (4) получено путем соответствующего преобразования (10) при выражении объема через диаметры эквивалентных сфер.
Сравнение заявляемого способа определения дисперсности частиц в аэрозольном облаке с прототипом и другими способами показывает, что предложенное сочетание признаков ранее неизвестно.
Пример реализации заявляемого способа определения дисперсности капель в факеле распыла форсунки приведен на фиг.2, где представлена структурная схема проведения отбора проб. В состав экспериментальной установки входят аэрозольная камера и блок осаждения частиц, который представляет собой электрофильтр [10].
Для исследования форсунку помещают в аэрозольную камеру, в которой создают пары исследуемой жидкости, а их концентрацию выбирают в соответствии с (2). Затем распыляют модельный раствор, концентрация которого выбирается из условия (1). Сформированный аэрозоль выдерживается в камере в течение времени, которое рассчитывается по формуле (3) для максимальных по размеру капель, ожидаемых в распыле. Затем аэрозоль прокачивается через электрофильтр, где частицы заряжаются под действием электрического поля и улавливаются на осадительных электродах, которые используются как пробоотборные пластины.
С использованием описанного способа проведены измерения дисперсности ультразвукового распыления на частотах 2,4 МГц. В качестве модельного раствора использовался раствор NaCl, концентрация которого в соответствии с (1) выбиралась равной 10% и 20%, при этом для 10%-го раствора: ( d)1=1071 кг/м3, µ d=1,19 Па·с, для 20%-го: ( d)2=1148 кг/м3; µ d=1,56 Па·с [11]. В соответствии с формулой (2) рассчитывался диапазон возможных значений концентраций паров испаряемого растворителя в аэрозольной камере. Очевидно, что расчеты обусловлены диаметром самых крупных капель, ожидаемых в распыле. Для данного вида распыления свойственно формирование мелкодисперсных капель (D<30 мкм) [12]. По результатам расчета для 10%-го и 20%-го раствора при атмосферном давлении и температуре T=293 K: CS=0,02 кг/м3, =1,1·10-9 м2/c, DAB =0,23·10-4 м2/c, H=0,3 м, µ g=18,27·10-6 Па·с [9]; диапазон значений С составляет от 0,0046 кг/м3 до 0,0195 кг/м3.
Таким образом, нормальные внешние условия: T=293 K, относительная влажность воздуха 50% (С =0,01 кг/м3) для данных характеристик распыла и выбранного раствора вполне удовлетворяют требованиям проведения пробоотбора. При этом время выдержки аэрозоля в камере составляет не менее 0,498 с и не более 11,9 с.
Дисперсность частиц сухого солевого остатка исследовалась с помощью оптического анализатора частиц «Pip 9.0». Результаты измерения счетной функции распределения частиц сухого остатка (1) и восстановленной функции (2) для 10%-го и 20%-го раствора приведены на фиг.3 и 4 соответственно. В случае 10%-го модельного раствора средний размер частиц солевого остатка D1 (50)=1,98 мкм, средний размер восстановленных капель D2 (50)=5,38 мкм, для случая 20%-го раствора (фиг.4): D1 (50)=2,22 мкм; D2(50)=4,72 мкм. Различное содержание NaCl в воде обуславливает отличие по вязкости и плотности раствора, этим объясняется, с учетом особенностей ультразвукового распыления [11], смещение размеров капель в сторону меньших значений при распылении 20%-го раствора.
Из примера видно, что заявленный способ позволяет восстанавливать реальную функцию распределения капель по функции распределения частиц их солевого остатка, что существенно увеличивает информативность и точность исследования.
ЛИТЕРАТУРА
1. Пажи Д.Г. Основы техники распыливания жидкостей / Процессы и аппараты химической и нефтехимической технологии / Д.Г. Пажи, B.C. Галустов. - М.: Химия, 1984. - 256 с.
2. Стебновский С.В. Импульсное диспергирование как предельный режим разрушения жидкого объема // Физика горения и взрыва. - 2008. - Т.44, № 2 - С.117 - 128.
3. Волынский М.С.Необыкновенная жизнь обыкновенной капли. - М.: 3нание, 1986. - 144 с.
4. Асланов С.К., Колпаков А.В. Влияние электрического поля на процесс диспергирования жидкой поверхности // Физика аэродисперсных систем. - 2002. - Вып.39. - С.7-13.
5. Основы электрогазодинамики дисперсных систем / Верещагин И.П., Левитов В.И., Мирзабекян Г.З., Пашин М.М. - М.: «Энергия», 1974. - 480 с.
6. Архипов В.А., Бондарчук С.С., Жуков А.С. Тепломассоперенос при получении оксидов металлов плазмохимическим методом // Всероссийская конференция «XXIX Сибирский теплофизический семинар» (Новосибирск, 15-17 ноября 2010 г.): материалы конф.: Новосибирск: Институт теплофизики им. С.С. Кутеталадзе, 2010. - доклад s 601.
7. Газовая динамика двухфазных течений в соплах / И.М. Васенин, В.А. Архипов, В.Г. Бутов, А.А. Глазунов, В.Ф. Трофимов. - Томск: Изд-во Томск, ун-та, 1986. - 264 с.
8. Фукс Н.А. Испарение и рост капель в газообразной среде. - М.: Мир, 1986. - 314 с.
9. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. Справочное пособие / Пер. с англ. под ред. Б.И. Соколова. - 3-е изд., перераб. и доп. - Л.: Химия, 1982 г.- 592 с., ил. - Нью-Йорк, 1977 г.
10. Ерошенко В.Г. Особенности обеспыливания газов электрофильтром ЭФА / Промышленная и санитарная очистка газов. М., 1983, № 5, С.7-8.
11. Ведерникова М.И., Старцева Л.Г., Юрьев Ю.Л., Орлов В.П. Примеры и задачи по массообменным процессам химической технологии: справ, пособие в 4 ч. Ч.IV: Основные физические, химические и теплофизические свойства веществ. - Екатеринбург: Урал. гос. лесотехн. ун-т, 2009. - 154 с.
12. Хмелев В.Н., Попова О.В. Многофункциональные ультразвуковые аппараты и их применение в условиях малых производств, сельском и домашнем хозяйстве: научная монография. - Барнаул: изд. АлтГТУ, 1997. - 160 с.