способ получения водорастворимого реагента для очистки природных и сточных вод (варианты)
Классы МПК: | C02F1/52 флоккуляцией или осаждением взвешенных загрязнений C02F1/56 высокомолекулярных соединений |
Автор(ы): | Жохова Ольга Кузьминична (RU), Богачёв Никита Александрович (RU), Блинов Андрей Александрович (RU), Бутов Геннадий Михайлович (RU), Уткина Екатерина Евгеньевна (RU), Быкадоров Николай Ульянович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU) |
Приоритеты: |
подача заявки:
2012-08-07 публикация патента:
20.10.2013 |
Изобретение относится к биотехнологии. Предложены способы получения реагента, обладающего свойствами как коагулянта, так и флокулянта (варианты). В одном варианте способ предусматривает взаимодействие жидкого коллоидного раствора гидроксохлорида алюминия (ГОХА) с динамической вязкостью 50-80 Па·с с хитозаном при одновременном добавлении алюминия марки АГ до достижения динамической вязкости 90-180 Па·с. В другом варианте способ предлагает взаимодействие раствора гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с с хитозаном. В обоих случаях массовое соотношение ГОХА:хитозан составляет 1:(0,01-0,20). Изобретения обеспечивают получение водорастворимого реагента для очистки природных и сточных вод, который не содержит токсичных, пожаро- и взрывоопасных веществ, обладает высокой коагуляционно-флокуляционной активностью, позволяет эффективно устранять из очищаемой системы ионы d-элементов, а также обладает дезинфицирующими свойствами. 2 н.п. ф-лы, 1 табл., 1 ил., 2 пр.

Формула изобретения
1. Способ получения водорастворимого реагента для очистки природных и сточных вод с использованием раствора гидроксохлорида алюминия, отличающийся тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 50-80 Па·с и подвергают взаимодействию с хитозаном с одновременным добавлением алюминия марки АГ до достижения динамической вязкости 90-180 Па·с при массовом соотношении гидроксохлорида алюминия и хитозана 1:(0,01-0,20).
2. Способ получения водорастворимого реагента для очистки природных и сточных вод с использованием раствора гидроксохлорида алюминия, отличающийся тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с и подвергают взаимодействию с хитозаном при их массовом соотношении 1:(0,01-0,20).
Описание изобретения к патенту
Изобретение относится к способам получения реагента, обладающего свойствами как коагулянта, так и флокулянта. Данный реагент может быть использован для очистки природных и сточных вод от взвесей, нефтепродуктов, растворенных органических и неорганических веществ, от ионов тяжелых металлов и обладает дезинфицирующим действием.
Известен способ получения гидроксохлорида алюминия (ГОХА) путем взаимодействия алюминия с хлороводородной кислотой различной концентрации (А.С. СССР № 618343, МКИ C01F 7/56, 1978), а также использование его в качестве коагулянта для очистки природных и сточных вод (А.С. Кулясова, Т.Н. Фомичева, ЖПХ, 1997. Т.70. С.371-374).
Известен способ получения полиакриламида (ПАА) путем полимеризации водного раствора акриламида (АА) радикальными инициаторами (М.Н.Савицкая, ЖПХ, 1959. Т.32. С.1797).
Указанные продукты обладают либо только коагуляционными свойствами (ГОХА), либо флокуляционными (ПАА) и не могут самостоятельно применяться, например, для очистки маломутных вод. В этом случае необходимо совместное действие коагулянта и флокулянта. Применение двух ингредиентов требует их раздельного введения в очищаемую воду. При этом сначала вводят коагулянт, а через 15-20 минут - флокулянт. Однако при добавлении флокулянта из-за интенсивного перемешивания разрушается «сетка», являющаяся структурой из продуктов гидролиза ГОХА, которая при седиментации захватывает примеси и очищает воду как подвижная мембрана, что может вызвать стабилизацию системы. То есть может вновь образовываться устойчивая дисперсная система из продуктов гидролиза ГОХА, а это приводит к резкому уменьшению степени очистки воды.
Наиболее близким по технической сущности к предполагаемому способу является способ получения реагента, обладающего свойствами как флокулянта так и коагулянта, включающего радикальную полимеризацию акриламида в присутствии инициирующей системы в растворе гидроксохлорида алюминия (Патент РФ № 2174105, кл. C02F 1/52, опубл. 27.09.2001, бюл. № 27).
К причинам, препятствующим достижению требуемого технического результата при использовании известных способов относятся следующие:
во-первых, раздельное введение в очищаемую систему коагулянта и флокулянта из-за двойного перемешивания приводит к уменьшению размеров флоккул из продуктов гидролиза ГОХА, которые трудно оседают в отстойниках, что снижает производительность фильтров;
во-вторых, применяемый по прототипу акриламид пожаро- и взрывоопасен, а также токсичен - поражает нервную систему, почки, печень, раздражает слизистые оболочки;
в-третьих, органические пероксиды, в частности используемый в прототипе в качестве инициирующей системы оксиалкил-трет-бутилпероксид, также относится к пожаро- и взрывоопасным веществам. При работе с ним требуется соблюдать серьезные меры безопасности: не оставлять на открытом воздухе, не допускать нагрева продукта выше 50°С, не допускать контакта с кислотами, щелочами и солями металлов переменной валентности, что требует дополнительных затрат при его хранении;
в-четвертых, оксиалкилпероксид при его неполном разложении в процессе полимеризации загрязняет очищаемую воду вредными для здоровья компонентами;
в-пятых, полученный по прототипу реагент лишь в незначительной степени выводит ионы тяжелых металлов из очищаемой системы.
В предлагаемом изобретении решается важная задача разработки экономически выгодного способа получения комплексного реагента, обладающего свойствами как коагулянта, так и флокулянта, который применяется для очистки природных и сточных вод от взвесей, нефтепродуктов, растворенных органических и неорганических веществ, тяжелых металлов, а также уплотнения осадков.
При реализации предлагаемого способа получения реагента получают следующий технический результат:
во-первых, полученный реагент в отличие от прототипа не содержит токсичных, пожаро- и взрывоопасных веществ, что упрощает технологию его синтеза, хранения и применения;
во-вторых, полученный продукт обладает более высокой коагуляционно-флокуляционной активностью из-за сильно разветвленной структуры хлопьев, образуемых при гидролизе этого комплексного реагента, что увеличивает скорость и степень очистки;
в-третьих, полученный реагент в отличие от прототипа позволяет эффективно устранять из очищаемой системы ионы d-элементов, в частности, катионы железа;
в-четвертых, полученный продукт из-за наличия в нем хитозана обладает хорошими дезинфицирующими свойствами, что важно для получения воды питьевого качества.
Указанный технический результат при осуществлении изобретения по первому варианту достигается в способе получения водорастворимого реагента для очистки природных и сточных вод с использованием раствора гидроксохлорида алюминия тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 50-80 Па·с и подвергают взаимодействию с хитозаном с одновременным добавлением алюминийсодержащего сырья до достижения динамической вязкости 90-180 Па·с при массовом соотношении гидроксохлорида алюминия и хитозана 1:(0,01-0,20).
Указанный технический результат при осуществлении изобретения по второму варианту достигается в способе получения водорастворимого реагента для очистки природных и сточных вод с использованием раствора гидроксохлорида алюминия тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с и подвергают взаимодействию с хитозаном при их массовом соотношении 1:(0,01-0,20).
Полиаминосахарид хитозан, используемый в качестве флокулирующего агента, является природным биополимером с большой молекулярной массой. Россия обладает значительными запасами сырья для производства хитозана - крабы, креветки, криль, гаммарус и др. (Хитин и хитозан: получение, свойства и применение / Под ред. К.Г. Скрябина, Г.А. Вихоревой, В.П. Варламова. - М.: Наука, 2002. - 368 с.). При взаимодействии его с полимерным ГОХА [Al2(OH)5Cl] образуется комплексный реагент в результате того, что одна часть фрагментов макромолекулы хитозана связывается с металлическим ядром ГОХА, а другая остается свободной, находясь в растворе в виде «хвостов» и «петель», способных образовывать полимерные мостики между соседними хлопьями. Это приводит к более разветвленной структуре хлопьев комплексного реагента при его гидролизе, что увеличивает коагуляционно-флокуляционную активность заявляемого продукта. Таким образом, увеличивается скорость и степень очистки объектов. Полученный продукт легко таблетировать, что удобно для индивидуального применения в экстремальных условиях для получения питьевой воды.
Способ осуществляется следующим образом.
Хлоралюминийсодержащий коагулянт получают взаимодействием алюминийсодержащего сырья (отходы алюминиевого производства, обрезки прокатного листа и др.) с хлороводородной кислотой (Патент Ru № 2255898 МКИ C01F 7/00, 7/58, опубл. 10.07.05, бюл. № 19). Полиаминосахарид хитозан вносят в раствор либо на стадии синтеза ГОХА (первый вариант), либо добавляют к готовому ГОХА (второй вариант).
Изобретение иллюстрируется следующими примерами.
ПРИМЕР 1. В этом примере обусловлено получение комплексного реагента по первому варианту.
В реакционную трехгорлую колбу емкостью 1,5 л, снабженную термометром и обратных холодильником для улавливания абгазов реакции, помещают 800 мл 10% хлороводородной кислоты и порциями добавляют гранулированный алюминий. В данном примере используют алюминий марки АГ ТУ 48-0107-95-90. Реакция сразу же начинает протекать очень бурно, с выделением большого количества тепла, поэтому для поддержания необходимой температуры (70-95°С) загрузка гранул производится дозированно. Примерно через час скорость реакции начинает падать, что связано с уменьшением концентрации хлороводородной кислоты и увеличением вязкости раствора. Когда вязкость раствора становится равной 50-80 Па·с, в колбу засыпают расчетное количество хитозана и продолжают дозировать алюминий до достижения вязкости 90-180 Па·с.
ПРИМЕР 2. В этом примере обусловлено получение комплексного реагента по второму варианту.
В колбу емкостью 200 мл вносят 100 мл ГОХА с вязкостью 90-180 Па-с, приготовленного из алюминия марки АГ ТУ 48-0107-95-90. Затем добавляют различные количества порошка хитозана согласно табл.1. Компоненты перемешивают и оставляют на 2-3 часа для набухания и последующего растворения хитозана.
Как по первому, так и по второму варианту получают образцы реагента с содержанием Al3+ 10,5-12,3% и рН 4,4-4,6. При этом массовое соотношение ГОХА: хитозан в готовом продукте составляет 1:(0,01-0,20). Выбор интервала концентраций вводимого хитозана ограничивается по верхнему и нижнему пределу скоростью осаждения хлопьев и степенью очистки (см. табл.1).
Было получено несколько комплексных реагентов с варьирующимися концентрациями действующих веществ и проведены сравнительные испытания их коагуляционной активности на модельной и реальной системах.
Чтобы исключить влияние посторонних факторов, для предварительной оценки коагулирующих свойств заявляемого продукта и сравнения этих параметров с прототипом в одинаковых условиях используют модельную каолиновую дисперсию с концентрацией дисперсионной фазы 0,5%. Эту дисперсию готовят из каолина и водопроводной воды, а затем выдерживают в течение 3 часов для набухания. Кинетику седиментации определяют на торсионных весах, опыты проводят при комнатной температуре.
На фигуре приведены сравнительные кинетические кривые седиментации каолина при обработке модельной системы чистым коагулянтом ГОХА, а также комплексными реагентами на основе модифицированного ГОХА: ГОХА+ПАА (прототип) и ГОХА+хитозан (заявляемый продукт). Доза всех реагентов по Al (III) составляет 2,56 мг/л. Для лучшего распределения реагентов по объему системы их предварительно разбавляют водой в 10-15 раз, получая рабочий раствор.
Прежде всего следует отметить высокую эффективность как коагулянта ГОХА, так и его смеси с органическими флокулянтами: введение очень небольших доз данных реагентов (0,5-1,0 мл/л) приводит к резкому увеличению скорости осаждения частиц по сравнению с холостым опытом в отсутствии реагентов. Однако, хорошо заметна и различная коагуляционная активность исследуемых реагентов. Угол наклона кривой седиментации для заявляемого реагента существенно выше, что говорит об ускорении процесса осаждения в данном случае. Основная масса каолина после обработки суспензии чистым ГОХА и ГОХА с ПАА оседает в первые 4-5 минут, в то время как для ГОХА с хитозаном этот параметр составляет всего 1,5-2 минуты, то есть скорость осаждения возросла в 2,5 раза. Такая высокая активность процесса объясняется образованием крупных агломератов из частиц твердой фазы суспензии и продуктов гидролиза комплексного реагента (ГОХА+хитозан), имеющих очень разветвленную структуру, что позволяет таким частицам оседать гораздо быстрее под действием гравитационных сил.
Полученные результаты седиментационного анализа хорошо согласуются с данными по эффективности работы каждого реагента на реальной системе. В таблице 1 представлены результаты исследований, которые проводились на стоках трубного завода с использованием реагента, полученного по первому и второму варианту. Исходная сточная вода, используемая в данной серии опытов, имеет следующие параметры: химическое потребление кислорода (ХПК) - 581 мг O2/л, взвешенные вещества - 432 мг/л, рН - 5,6, содержание общего железа (Fe2+, Fe3+ ) - 51,8 мг/л. Концентрация вводимого ГОХА и реагента по прототипу была выбрана по максимальной степени очистки и составляет по основному веществу Al3+ для чистого ГОХА 45,6 мг/л, а для реагента (ГОХА+ПАА) - 31,8 мг/л. Концентрация же заявляемого реагента (ГОХА+хитозан) по Al3+ была гораздо ниже - 11,2 мг/л.
Из таблицы видно, что применение комплексных реагентов как с ПАА, так и с хитозаном позволяет улучшить показатели очистки стоков по сравнению с чистым ГОХА. Однако, модификация ГОХА флокулянтом полиаминосахаридом хитозаном при гораздо меньшей дозировке по Al3+ позволяет получить существенно более высокую степень очистки стоков. Особенно это касается очистки от ионов тяжелых металлов, в частности от железа.
Если чистый ГОХА и ГОХА с ПАА выводят из системы всего 20-26% ионов железа, то комплексный реагент (ГОХА+хитозан) улучшает этот показатель в 3,5 раза. Объяснением этого является высокая термодинамическая жесткость полисахаридных макромолекул по сравнению с гибкоцепными синтетическими флокулянтами, способствующая образованию мостиков при сравнимой и даже значительно меньшей молекулярной массе.
В таблице хорошо просматривается оптимальный интервал концентраций модификатора ГОХА - хитозана. Высоких результатов очистки по всем трем параметрам удалось достичь при массовом соотношении ГОХА:хитозан=1:(0,01-0,20). Дальнейшее увеличение массовой доли хитозана не приводит к сколько-нибудь значительному улучшению показателей очистки, поэтому экономически не целесообразно.
Исходя из приведенных примеров следует:
во-первых, способ получения водорастворимого реагента, заключающийся во взаимодействии жидкого коллоидного раствора ГОХА с хитозаном, позволяет получать эффективный продукт для очистки природных и сточных вод с более высокой степенью и скоростью очистки при меньшей концентрации Al3+ чем в прототипе;
во-вторых, полученный продукт в отличие от прототипа не содержит токсичных, пожаро- и взрывоопасных веществ, работа с которыми предполагает дополнительные затраты и не позволяет использовать его для целей водоподготовки;
в-третьих, полученный продукт из-за наличия в нем хитозана обладает хорошими дезинфицирующими свойствами, что важно для получения воды питьевого качества;
в-четвертых, полученный реагент в отличие от прототипа позволяет эффективно устранять из очищаемой системы катионы тяжелых металлов, в частности, катионы железа, которые можно выделять из шлама для последующего использования.
Таблица 1 | |||||||
Влияние состава реагента на степень очистки стоков трубного завода | |||||||
Состав реагента | Соотношение ГОХА: флокулянт, мас.ч. | ХПК, мг O2/л | Взвешенные вещества, мг/л | Содержание общего железа (Fe2+, Fe3+), мг/л | Степень очистки, % | ||
по ХПК | по взвешенным веществам | по ионам железа | |||||
ГОХА+хитозан | 1:0,005 | 279 | 168 | 40 | 52 | 61 | 23 |
1:0,01 | 122 | 48 | 15 | 79 | 89 | 71 | |
1:0,05 | 99 | 30 | 11 | 83 | 93 | 79 | |
1:0,10 | 81 | 22 | 10 | 86 | 95 | 81 | |
1:0,20 | 64 | 17 | 7 | 89 | 96 | 87 | |
1:0,30 | 64 | 13 | 6 | 89 | 97 | 88 | |
ГОХА | - | 273 | 181 | 41 | 53 | 58 | 21 |
ГОХА+ПАА (прототип) | 1:0,10 | 209 | 143 | 38 | 64 | 67 | 26 |
Класс C02F1/52 флоккуляцией или осаждением взвешенных загрязнений
Класс C02F1/56 высокомолекулярных соединений