трехсекционный контактный резервуар для обработки воды озоном

Классы МПК:C02F1/78 озоном
Автор(ы):, , , ,
Патентообладатель(и):Закрытое акционерное общество "Высокоэффективные электрозарядные технологии и оборудование" (ЗАО "ВЭТО") (RU)
Приоритеты:
подача заявки:
2011-12-19
публикация патента:

Изобретение относится к технике обработки воды озонированием и может быть использовано, в частности, для обеззараживания питьевой воды в системах водоснабжения городов и населенных пунктов, для дезинфекции оборотной воды бассейнов. В трехсекционном контактном резервуаре дополнительно между первой и второй секциями контактного резервуара установлен межсекционный перепускной отсек с перегородкой посередине, разделяющей межсекционный отсек на полости, сообщающиеся через сквозной канал. Каждая секция дополнительно оборудована перфорированными трубами, заглушенными с одного торца. Одна группа установлена вверху под уровень горизонта воды в секции. Другая группа установлена у дна секции, ниже диспергаторов озоно-воздушной смеси. Открытые торцы труб, установленные вверху у горизонта воды первой и второй секции, сообщены с соответствующими полостями межсекционного перепускного отсека. Открытые торцы придонных труб первой секции сообщены с напорным отсеком. Придонные трубы второй и третьей секции состыкованы между собой. Верхние трубы у горизонта воды третьей секции сообщены со сливным отсеком. Техническим результатом изобретения является повышение качества питьевой воды и эффективности использования произведенного озона. 6 з.п. ф-лы, 5 ил. трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832

трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832

Формула изобретения

1. Трехсекционный контактный резервуар для обработки воды озоном, включающий: три сообщающиеся между собой герметичные реакционные емкости, выполненные предпочтительно из бетона каждая в виде параллелепипеда, расположенные между напорным отсеком, соединенным с источником обрабатываемой воды, и сливным отсеком, имеющим отвод для подачи воды потребителю, а также оборудованный системой подачи озоно-воздушной смеси в каждую реакционную секцию и ее диспергирования в воду, системой отведения и деструкции остаточного озона в озоно-воздушной смеси, отличающийся тем, что дополнительно между первой и второй секциями установлен межсекционный перепускной отсек с перегородкой посередине, в нижней части которой выполнен сквозной канал, и каждая секция контактного резервуара дополнительно оборудована перфорированными трубами, заглушенными с одного торца, одна группа из них установлена вверху под уровень горизонта воды в секции, а другая группа установлена у дна секции ниже диспергаторов озоно-воздушной смеси, при этом открытые торцы труб, установленных вверху у горизонта воды первой и второй секции, сообщены с соответствующими полостями межсекционного перепускного отсека, а открытые торцы придонных труб первой секции сообщены с напорным отсеком, а придонных труб второй и третьей секции состыкованы между собой, верхних труб у горизонта воды второй секции сообщены с межсекционным перепускным отсеком, верхних труб у горизонта воды третьей секции сообщены со сливным отсеком.

2. Контактный резервуар по п.1, отличающийся тем, что межсекционный перепускной отсек с перегородкой посередине выполнен из двух параллельных стенок высотой выше уровня воды в секции, отстоящих друг от друга на расстоянии 0,8трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 1,4 м.

3. Контактный резервуар по п.1, отличающийся тем, что диаметры отверстий перфорации труб составляют 20трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 25 мм.

4. Контактный резервуар по п.1, отличающийся тем, что суммарная площадь перфорированных отверстий в каждой группе труб секции составляет 0,01трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 0,02 площади поперечного сечения секции резервуара.

5. Контактный резервуар по п.1, отличающийся тем, что в каждой группе труб их оси параллельны друг другу и размещены с шагом, равным от 17 до 25% глубины погружения диспергаторов в секции.

6. Контактный резервуар по п.1, отличающийся тем, что установленные в верхней части первой и третьей секции контактного резервуара, заглушенные с одного торца перфорированные трубы, выполнены с одним продольным рядом прямоугольных окон с каждой боковой стороны с соотношением высоты окон к ширине 2:1, а суммарная ширина окон в одном ряду равна половине рабочей длины трубы, при этом в зоне расположения окон поверхность трубы выполнена плоской, и каждый ряд окон снабжен накладной рейкой с прямолинейной верхней рабочей кромкой с возможностью установки рабочей кромки параллельно и ниже уровня воды в секции на заданной глубине с обеспечением равенства расходов воды через единичное окно.

7. Контактный резервуар по п.1, отличающийся тем, что в придонной части каждой секции контактного резервуара ниже диспергаторов озоно-воздушной смеси вместо перфорированных труб установлены горизонтальные перфорированные перегородки с диаметром отверстий 20трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 25 мм, причем суммарная площадь отверстий в перегородках составляет 0,01трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 0,02 площади поперечного сечения секции, а в стенках напорного отсека и перепускных межсекционных отсеков выполнены сквозные каналы, расположенные ниже горизонтальных перфорированных перегородок.

Описание изобретения к патенту

Изобретение относится к технике обработки воды озонированием и может быть использовано, в частности, для обеззараживания питьевой воды в системах водоснабжения городов и населенных пунктов, для дезинфекции оборотной воды бассейнов.

Из уровня техники известна установка для озонирования воды, содержащая систему подготовки воздуха, соединенную с генератором озона, источник электропитания, реакционную емкость в виде контактного резервуара, разделенного на отдельные секции вертикальными поперечными перегородками, поочередно примыкающими ко дну контактного резервуара, и перегородками, установленными с зазором относительно дна, обеспечивающими последовательное перетекание воды из секции в секцию от входа в контактный резервуар к выходу из него, при этом в нижней части каждой секции установлены диспергаторы озоно-воздушной смеси, сообщенные с генератором озона, систему деструкции остаточного озона, волновой генератор или устройство для возбуждения ударных волн, размещенные в нижней части секции контактного резервуара, которые могут быть объединены в отдельные модули контейнерного типа (Патент РФ № 2169122, C02F 1/78, опубл. 2001).

К недостаткам известной установки относится то, что направление движения воды в секциях происходит не параллельно стенкам контактного резервуара, а по диагонали, что обусловлено конструкцией межсекционных перегородок (Фиг.1), тогда как исходное направление движения пузырьков озоно-воздушной смеси снизу вверх.

Вследствие этого в каждой секции контактного резервуара образуются по две угловые застойные зоны с круговой циркуляцией воды и пузырьков озоно-воздушной смеси.

В застойных зонах повышается концентрация растворенного в ней озона, вследствие чего в этих местах выход озона из пузырьков озоно-воздушной смеси замедляется, а концентрация остаточного озона в газовой подушке секции увеличивается.

Кроме того, при направлении потока воды по диагонали снижается площадь поперечного сечения ядра потока и уменьшается время пребывания воды в реакционной зоне секции.

Из уровня техники также известна установка для озонирования воды, содержащая компрессор, к выходу которого подключена система подготовки воздуха, соединенная с входом блока генерации озона, к выходу которого подключены входы формирующих пузырьки озоно-воздушной смеси диспергаторов, размещенных в нижней части контактного бассейна, который разделен на N секций с помощью N-1 поперечных вертикальных перегородок, причем перегородки с четным порядковым номером примыкают ко дну бассейна, поперечные вертикальные перегородки с нечетным порядковым номером имеют высоту больше уровня воды в контактном бассейне, вход для воды размещен в верхней части первой секции, а выход для воды - в последней секции, отличающаяся тем, что поперечные вертикальные перегородки с четным порядковым номером имеют высоту больше уровня воды в контактном бассейне, перегородки с нечетным порядковым номером примыкают ко дну бассейна, в верхней части секций с номерами n>1 расположены дополнительные входы для воды, выход для воды связан с дополнительными выходами для воды, размещенными в нижней части секций с номерами n=1трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 , N-1 (Патент РФ № 2214369, C02F 1/78, опубл. 2003).

Эта установка имеет тот же недостаток, что и установка по патенту РФ № 2169122. Вода в секциях движется также по диагонали, только направление движения воды в секциях изменены на противоположные в сравнении с установкой по упомянутому патенту (см. Фиг.2).

Наиболее близким аналогом изобретения, взятым за прототип, является установка для озонирования воды, включающая систему предварительной подготовки воздуха, источник электропитания, генератор озона, сообщенный с диспергаторами озоно-воздушной смеси, установленными в придонной части секции контактного резервуара, систему подачи воды, сообщенной с источником обрабатываемой воды, отводной трубопровод для очищенной воды и систему для последовательного перетекания обрабатываемой воды из секции в секцию, содержащую межсекционные перегородки, поочередно примыкающие ко дну контактного резервуара, и перегородки, установленные с зазорами относительно дна (Патент РФ № 2207985, C02F 1/78, опубл. 2007).

К недостаткам данной установки относится то, что поток воды в секциях контактного резервуара движется по диагонали, а исходный поток озоно-воздушной смеси имеет вертикальное направление снизу вверх, в результате чего возникают угловые застойные зоны с местной круговой циркуляцией воды с растворенным в ней озоном. По этой причине расчетное время пребывания в зоне обработки озоном для диагонального потока воды сокращается, а для циркулирующей части воды - увеличивается, что снижает степень очистки воды в целом.

Задачей предлагаемого технического решения является обеспечение заданного движения потока воды в каждой секции контактного резервуара (спутный поток воды и озоно-воздушной смеси в первой и третьей секциях, противоток воды и озоно-воздушной смеси во второй секции), при последовательном перетекании воды из секции в секцию, и равномерного распределения ее по поперечному сечению каждой секции контактного резервуара.

Решение указанной задачи достигается тем, что в трехсекционном контактном резервуаре для обработки воды озоном, включающим: три сообщающиеся между собой герметичные реакционные емкости, выполненные предпочтительно из бетона каждая в виде параллелепипеда, расположенные между напорным отсеком, соединенным с источником обрабатываемой воды, и сливным отсеком, имеющим отвод для подачи воды потребителю, а также оборудованным системой подачи озоно-воздушной смеси в каждую реакционную секцию и ее диспергирования в воду, системой отведения и деструкции остаточного озона в озоно-воздушной смеси дополнительно между первой - 1 и второй - 2 секциями контактного резервуара (см. Фиг.3) установлен межсекционный перепускной отсек - 6, с перегородкой посередине - 7, разделяющей межсекционный отсек на 2 полости, сообщающиеся через сквозной канал - 19, и каждая секция дополнительно оборудована перфорированными трубами, заглушенными с одного торца, одна группа из них - 8, 9, 10 установлена вверху под уровень горизонта воды в секции, а другая группа - 11, 12, 13 установлена у дна секции ниже диспергаторов озоно-воздушной смеси - 16, 17, 18, при этом открытые торцы труб, установленных вверху у горизонта воды - 8 и 9 первой и второй секции, сообщены с соответствующими полостями межсекционного перепускного отсека - 6, а открытые торцы придонных труб - 11 первой секции сообщены с напорным отсеком - 4, придонные трубы второй и третьей секции состыкованы между собой, верхние трубы у горизонта воды третьей секции сообщены со сливным отсеком - 5.

Межсекционный перепускной отсек - 6 с перегородкой посередине - 7 выполнен из двух параллельных стенок, отстоящих друг от друга на расстоянии 0,8трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 1,4 м, высотой выше уровня воды в секциях - 1 и 2.

Отверстия перфорации в трубах - 9, 11, 12, 13 для прохода воды выбраны диаметром 20трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 25 мм, а суммарная площадь отверстий в трубах отдельных секций, установленных под уровень горизонта воды - 8, 9, 10 и у дна секций - 11, 12, 13; равна 0,01трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 0,02 площади поперечного сечения секции резервуара.

На каждом уровне в каждой группе труб их оси установлены параллельно друг другу и размещены с шагом, равным от 17 до 25% глубины погружения диспергаторов в секции.

Установленные в верхней части секций - 1 и 3, заглушенные с одного торца перфорированные трубы - 8 и 10, могут быть выполнены с одним продольным рядом прямоугольных окон с каждой боковой стороны с соотношением высоты окон к ширине 2:1, а суммарная ширина окон в одном ряду равна половине рабочей длины трубы, при этом в зоне расположения окон поверхность трубы выполнена плоской, и каждый ряд окон снабжен накладной рейкой с прямолинейной верхней рабочей кромкой с возможностью установки рабочей кромки параллельно и ниже уровня воды в секции на заданной глубине с обеспечением равенства расходов через единичное окно.

Выполнение перфорированных труб для распределения обрабатываемой воды между секциями контактного резервуара с накладками на прямоугольные отверстия, регулирующими толщину слоя воды над переливной кромкой, повышает степень равномерности распределения потоков воды по поперечному сечению секции контактного резервуара и, в конечном счете, увеличивает эффективность процесса озонирования воды.

В придонной части каждой секции контактного резервуара ниже диспергаторов озоно-воздушной смеси вместо придонных перфорированных труб - 11, 12, 13 могут быть установлены горизонтальные перфорированные перегородки 20, 21, 22 (см. Фиг.4) с диаметром отверстий 20трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 25 мм, причем суммарная площадь отверстий в перегородках составляет 0,01трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 0,02 площади поперечного сечения секции, а в стенках первой и третьей секции выполнены сквозные каналы - 23, 24, расположенные ниже горизонтальных перфорированных перегородок.

Трехсекционный контактный резервуар поясняется чертежами. На Фиг.1 изображена схема смены направления потока воды на противоположное при ее перетекании из секции в секцию и схема течения воды в каждой секции в трехсекционном контактном резервуаре, принятом за прототип. Стрелками показаны направления движения воды.

На Фиг.2 изображена схема смены направления потока воды на противоположное при ее перетекании из секции в секцию и схема течения воды в каждой секции в трехсекционном контактном резервуаре с дополнительным вводом воды.

На фиг.3 изображена конструктивная схема предлагаемого трехсекционного контактного резервуара, где цифрами обозначены: 1, 2, 3 - секции контактного резервуара, 4 - напорный отсек, 5 - сливной отсек, 6 - перепускной межсекционный отсек, 7 - перегородка в межсекционном перепускном отсеке, 8, 9, 10 - перфорированные трубы верхнего уровня, 11, 12, 13 - перфорированные придонные трубы, 14 - входное отверстие для подачи воды, 15 - выходное отверстие для слива воды, 16, 17, 18 - диспергаторы озоно-воздушной смеси, 19 - сквозной канал в перегородке для прохода воды в перепускном отсеке. Полыми стрелками показаны направления движения потока озоно-воздушной смеси, а простыми стрелками - направления движения воды.

На фиг.4 изображена конструктивная схема предлагаемого трехсекционного контактного резервуара, в котором вместо придонных перфорированных труб установлены горизонтальные перфорированные перегородки 20, 21, 22, являющиеся идентичными по выполняемой функции, подача воды из напорного отсека в секцию - 1 и из секции - 2 в секцию - 3 осуществляется через каналы - 23, 24, расположенные ниже перфорированных перегородок.

На Фиг.5 изображена конструктивная схема установки регулирующих реек - 25 на перфорированной трубе - 8. Перфорированные трубы - 8, 10, установленные в верхней части первой и третьей секции контактного резервуара, осуществляющие прием воды внутрь через отверстия в боковых стенках и слив ее через открытый торец, выполнены с частично плоскими боковыми стенками, в верхней части которых выполнены на равном расстоянии друг от друга по длине трубы прямоугольные отверстия - 26, суммарная ширина которых равна половине трубы, и они снабжены накладными рейками - 25, с прямолинейными верхними кромками, установленными с двух сторон на боковых стенках с возможностью изменения вертикального положения ее верхней кромки относительно горизонта воды в контактном резервуаре и угла наклона для обеспечения необходимой высоты слоя воды над кромками в каждом отверстии и равенство расходов через каждое отверстие.

Заявленный трехсекционный контактный резервуар работает следующим образом: под давлением в напорном отсеке - 4 вода подается в первую секцию через перфорированные трубы - 11, установленные в нижней части этой секции. При выходе струй воды из внутренней полости труб в водный массив секции через отверстия перфорации диаметром 20трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 25 мм из-за резкого расширения струи происходит резкое снижение скорости от 600трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 700 мм/с и на удалении 300трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 400 мм от выхода скорость воды по всему поперечному сечению секции составляет 5трехсекционный контактный резервуар для обработки воды озоном, патент № 2495832 8 мм/с, что подтверждается экспериментами.

Поток воды остается равномерно распределенным на уровне диспергаторов - 16 и выше до входа в отверстия перфорации труб, установленных под уровень воды. Далее поток воды через открытый торец перфорированной трубы - 8 в верхней части этой секции поступает в межсекционный отсек - 6, обеспечивающий смену направления воды, и через перфорированные, заглушенные с одного торца трубы - 9 сверху поступает во вторую секцию контактного резервуара, направляется сверху вниз равномерно по поперечному сечению второй секции к придонным трубам 12.

Из открытых торцев перфорированных придонных труб - 12 второй секции вода поступает в перфорированную придонную трубу - 13 третьей секции и далее через верхнюю перфорированную трубу - 10 подается в сливной отсек - 5 и направляется потребителю.

Данная конструкция трехсекционного контактного резервуара в полном объеме решает поставленную задачу и обеспечивает равномерное распределение потока воды по поперечному сечению каждой секции на всей высоте слоя обрабатываемой воды и обеспечивает в первой и третей секциях спутный поток, а во 2-й секции - противоток воды и озоно-воздушной смеси.

Класс C02F1/78 озоном

способ обезвреживания цианистых растворов -  патент 2526069 (20.08.2014)
контактный резервуар для обработки воды озоном (варианты) -  патент 2509732 (20.03.2014)
многосекционный контактный резервуар для обработки воды озоном -  патент 2505487 (27.01.2014)
способ обезвреживания морской балластной воды -  патент 2500624 (10.12.2013)
установка для очистки воды -  патент 2498945 (20.11.2013)
многосекционный контактный резервуар для обработки воды озоном -  патент 2498944 (20.11.2013)
трехсекционный контактный резервуар для обработки воды озоном -  патент 2495831 (20.10.2013)
система для очистки воды -  патент 2486137 (27.06.2013)
способ получения озона -  патент 2478082 (27.03.2013)
способ получения катализатора на основе нитрида бора для очистки сточных вод от фенола, катализатор, полученный этим способом, и способ очистки сточных вод от фенола с использованием этого катализатора -  патент 2473471 (27.01.2013)
Наверх