морской гидрофизический комплекс

Классы МПК:G01V1/38 районов, покрытых водой
G01N27/00 Исследование или анализ материалов с помощью электрических, электрохимических или магнитных средств
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П. Ширшова РАН (RU)
Приоритеты:
подача заявки:
2012-05-03
публикация патента:

Настоящее предлагаемое изобретение относится к области исследования океана и может быть использовано для комплексного измерения гидрофизических параметров в океанологии, гидрофизике и гидрографии. Заявленный морской гидрофизический комплекс, содержащий жесткий опорный конструктив, объединяющий автономные гидрофизические модули, каждый из которых выполняет определенную измерительную или синхронизирующую функцию, заключенные в отдельные бароустойчивые корпуса, при этом каждый бароустойчивый корпус снабжен радиочастотным приемопередающим модемом, закрепленным с внутренней стороны корпуса на прозрачной для электромагнитного излучения вставке. Технический результат, достигаемый от реализации заявленного решения, заключается в увеличении надежности работы морских измерительных приборов, упрощении их эксплуатации и унификации морской измерительной техники. 1 ил. морской гидрофизический комплекс, патент № 2496126

морской гидрофизический комплекс, патент № 2496126

Формула изобретения

Морской гидрофизический комплекс, содержащий жесткий опорный конструктив, объединяющий автономные гидрофизические модули, каждый из которых выполняет определенную измерительную или синхронизирующую функцию, заключенные в отдельные бароустойчивые корпуса, отличающийся тем, что каждый бароустойчивый корпус снабжен радиочастотным приемопередающим модемом, закрепленным с внутренней стороны корпуса на прозрачной для электромагнитного излучения вставке.

Описание изобретения к патенту

Настоящее предлагаемое изобретение относится к области исследования океана и может быть использовано для комплексного измерения гидрофизических параметров в океанологии, гидрофизике и гидрографии.

Известна система для измерения гидрофизических параметров, содержащая жесткий опорный конструктив, объединяющий микропроцессор с подключенными к нему блоками аналогоцифровой обработки параметров, связанными через бароустойчивые разъемы с гидрофизическими датчиками [1]. Система MINIpack имеет возможность использовать 16 каналов измерений сигналов от внешних датчиков как в притопленном, так и буксируемом режиме, а также возможность ограниченной рекомбинации измерителей путем разборки конструктива и частичной замены блоков в объединяющем бароустойчивом корпусе. Наличие корпуса не только затрудняет перекомпоновку для рекомбинации и требует стационарных условий для последующей метрологической поверки всей системы, но и ограничивает возможности вариабельности параметров конкретным объемом, что весьма существенно в процессе конкретной экспедиции или рейса судна. В большинстве случаев требуется иметь возможность оперативно варьировать набором измеряемых параметров в процессе дорогостоящего рейса научного судна или экспедиции. Известные решения не могут обеспечить указанного свойства в силу своих недостатков.

Известна мультипараметрическая система для измерения гидрофизических параметров, в которой каждый датчик и связанный с ним соответствующий микропроцессор заключены в отдельный бароустойчивый корпус и представляют собой законченный автономный модуль, исполняющий свою измерительную функцию, при этом микропроцессоры объединены последовательным асинхронным интерфейсом через бароустойчивые разъемы в единую двухпроводную сеть, в которой один из модулей является синхронизирующим - ведущим для всей системы [2].

Известная система позволяет оперативно изменять количество контролируемых параметров, но по-прежнему требует механических манипуляций, связанных с использованием гермовводов электрических цепей и их монтажем, следствием чего является снижение надежности работы всей системы и сложность ее эксплуатации.

Целью настоящего предложения является увеличение надежности работы морских измерительных приборов, упрощение их эксплуатации и унификация морской измерительной техники.

Поставленная цель достигается тем, что в известной мультипараметрической системе, имеющей жесткий опорный конструктив, в котором находятся автономные измерительные гидрофизические модули, каждый из которых выполняет определенную измерительную или синхронизирующую функцию, каждый модуль заключен в отдельный бароустойчивый корпус, при этом каждый бароустойчивый корпус (модуль) снабжен радиочастотным приемопередающим модемом, расположенным с внутренней стороны корпуса на прозрачной для электромагнитного излучения вставке.

Пример практической реализации.

На чертеже - фиг.1 - показано предлагаемое устройство. Морской гидрофизический комплекс содержит опорный конструктив из синтактика 1 Синтактик, являясь прозрачным для радиочастотного сигнала, вытесняет морскую воду из объема между ведущим модулем 2 и опрашиваемыми датчиковыми модулями - 3, содержащими весь набор аппаратуры для измерения какого-то одного параметра (давления, солености, скорости потока и пр). Как правило, модули выполняются из металла, и применение РЧ модемов внутри корпусов для связи всех модулей в единую систему измерений и обработки информации невозможно. Поэтому внизу каждого корпуса, входящего в синтактик, находятся вставки из прозрачного для радиоизлучения материала 4, с внутренней стороны которых расположены приемопередающие РЧ модемы 5. Материал вставок должен выдерживать давление на рабочей глубине комплекса.

Ведущий модуль 2, вырабатывая временные интервалы, снимает информацию поочередно с датчиковых модулей 3 по радиочастотному подводному каналу и накапливает ее в энергонезависимой памяти типа FLASH карты. При этом для связи между модулями не требуются герморазъемы и подводные кабели. Упрощается замена измерительных модулей в конструктиве, что повышает потребительскую привлекательность комплекса, его вариабельность. Также упрощается поверка автономных датчиковых модулей, способных работать самостоятельно.

Комплекс содержит традиционные для подводных станций размыкатель балласта 6 и сам балласт 7, находящийся на дне 8. Работа комплекса предложенной конструкции ничем не отличается от известных измерительных систем современной архитектуры.

Каждый модуль измерительной системы работает в автономном режиме независимо от остальных модулей, но по программе, написанной для всей системы и хранящейся в памяти программ ведущего модуля. Такая система формируется под задачу непосредственно перед измерениями из готовых к употреблению отдельных модулей.

Предложенная конструкция помимо упомянутых преимуществ очень удобна в эксплуатации. После подъема на поверхность вся информация, накопленная в ведущем блоке, может быть считана на персональный компьютер по скоростному WiFi каналу.

Источники информации

1. Chelsea Technologies Group - Sensors - MINIpack CTD-F, Sensor Suite Compact, Smart Media based multi-parameter monitoring system for oceanography and limnology, Chelsea Technologies Group 55 Central Avenue, Molesey, Surrey, KT8 2QZ, UK. www.chelsea.co.uk/lnstruments%20MINIPACK.htm.

2. Патент России № 2350934.

Класс G01V1/38 районов, покрытых водой

система для генерации волн сжатия в подводных условиях -  патент 2526600 (27.08.2014)
способ оценки потока газа -  патент 2522169 (10.07.2014)
способ профилирования донных отложений -  патент 2518023 (10.06.2014)
способ профилирования донных отложений -  патент 2517983 (10.06.2014)
способ поиска углеводородов на шельфе северных морей -  патент 2517780 (27.05.2014)
способ и система для управления сейсмическими косами -  патент 2516591 (20.05.2014)
система для определения колебаний водной поверхности -  патент 2503980 (10.01.2014)
система поиска морских месторождений углеводородов -  патент 2503977 (10.01.2014)
способ оценки геологической структуры верхних слоев дна -  патент 2503037 (27.12.2013)
способ поиска месторождений углеводородов на морском шельфе -  патент 2503036 (27.12.2013)

Класс G01N27/00 Исследование или анализ материалов с помощью электрических, электрохимических или магнитных средств

устройство контроля материалов и веществ -  патент 2529670 (27.09.2014)
прибор контроля трубопровода с двойной спиральной матрицей электромагнитоакустических датчиков -  патент 2529655 (27.09.2014)
способ и устройство для контроля над процессом лечения повреждения -  патент 2529395 (27.09.2014)
способ и устройство для определения доли адсорбированного вещества в адсорбирующем материале, применение устройства для определения или мониторинга степени насыщения адсорбирующего материала, а также применение устройства в качестве заменяемой вставки для поглощения влаги в технологическом приборе -  патент 2529237 (27.09.2014)
способ детекции аналита из раствора на частицах и устройство для его реализации -  патент 2528885 (20.09.2014)
стенд и способ контроля посредством магнитной дефектоскопии вала газотурбинного двигателя -  патент 2528856 (20.09.2014)
способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота -  патент 2528584 (20.09.2014)
способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации -  патент 2528273 (10.09.2014)
полупроводниковый газовый датчик -  патент 2528118 (10.09.2014)
способ изготовления чувствительного элемента датчиков газов с углеродными нанотрубками -  патент 2528032 (10.09.2014)
Наверх