анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления

Классы МПК:
Патентообладатель(и):
Приоритеты:
подача заявки:
0000-00-00
публикация патента:

Предложен анионообменный сорбент на основе сополимера стирола и дивинилбензола с четвертичной аммониевой функциональной группой, химически привитой к сополимеру посредством алкильного или ацильного радикала (R1). R1 выбран из ряда: СН-СН3, С(O)(СН2)n, (CH2)n, (n=1-6). Четвертичная аммониевая функциональная группа содержит один метильный и два 2-гидроксипропильных радикала. Общая формула сорбента соответствует формуле (1).

R2 выбран из ряда: Н, ОН, Hal (галоген), Alkye (алкильный радикал). Изобретение обеспечивает снижении влияния матрицы на удерживание поляризуемых анионов. 2 н. и 8 з.п. ф-лы, 2 табл., 1 ил.

Описание изобретения к патенту

Изобретение относится к новому полимерному анионообменному материалу, который может быть использован в ионной хроматографии в качестве сорбента для одновременного определения поляризуемых и неполяризуемых неорганических анионов с повышенной эффективностью, позволяющий произвести селективное разделение смеси свыше семи анионов, в частности, для анализа воды на содержание неорганических анионов.

В последние годы наблюдается значительный интерес к поиску новых сорбентов для ионной хроматографии. В качестве матрицы для таких сорбентов наиболее перспективно использовать сополимеры стирола и дивинилбензола с высокой степенью сшивки, определяемой повышенным содержанием в сополимере дивинилбензола, так как они характеризуются большей механической стабильностью, выдерживают высокие давления в системе, обеспечивая возможность снижения размера частиц и повышения эффективности разделения.

Однако при использовании ионообменных смол на основе сополимеров стирола и дивинилбензола удерживание анионов может определяться не только ионообменными, но и неионообменными взаимодействиями. Адсорбционные типы взаимодействий наблюдаются, как правило, со всеми поляризуемыми неорганическими и органическими ионами, которые характеризуются низкой энергией гидратации, гидрофобностью и сильными π-π взаимодействиями (взаимодействия π-электронных оболочек поляризуемых анионов с π-электронными оболочками ароматических колец, которые составляют структуру матрицы). В результате этих взаимодействий образуются так называемые π-π комплексы с ароматической основой ионообменника. В некоторых случаях даже разделение простых неорганических анионов, таких как нитрат и бромид, во многом определяется адсорбционными свойствами сорбента. Негативное влияние π-π взаимодействий с матрицей проявляется в больших временах удерживания поляризуемых анионов и снижении эффективности их разделения.

В связи с этим поиск новых подходов к синтезу анионообменников на основе матриц с высокой степенью сшивки, а также способов снижения влияния матрицы на удерживание анионов является актуальной научной проблемой.

Известен (Xu Н., Hu X. // Reactive and Functional Polymers. 1999. V.42. Р.235-242) сорбент на основе макропористого сополимера стирола и дивинилбензола (степень сшивки 8%, размер частиц 0.3-1.0 мм), в котором химически привитой функциональной группой является триметиламмониевая группа, удаленная от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой.

Однако невысокая степень сшивки полимерной матрицы и большой диаметр частиц делают данный сорбент непригодным для проведения высокоэффективного определения неорганических анионов.

Способ получения данного сорбента заключается в проведении следующих стадий:

1) ацилирование матрицы уксусным ангидридом в соотношении 1 г реагента на 1 г матрицы, синтез проводят при температуре 50°С в течение 4-х часов;

2) восстановительное аминирование с помощью гидрохлорида диметиламина и цианоборогидрида натрия;

3) алкилирование йодистым метилом.

Данный метод синтеза прост в исполнении и не требует использования высокотоксичных реагентов.

Однако триметиламмониевая функциональная группа при таком способе синтеза не обеспечивает снижения вклада неионообменных взаимодействий поляризуемых анионов, таких как нитрат и бромид, с ароматической основой сорбента. Это сказывается на эффективности определения и относительном удерживании таких анионов.

Известен (патент РФ №2429070, МПК B01J 20/26 (2006.01), опуб. 20.09.2011) принятый за прототип сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов на основе сополимера стирола и дивинилбензола с химически привитой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой, в котором функциональная группа представляет собой 2-гидроксипропил-N,N-диметиламмониевую группу общей формулы

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571,

где R - выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал).

Способ получения такого сорбента включает последовательное проведение в органическом растворителе ацилирования матрицы уксусным ангидридом, восстановительного аминирования и алкилирования реагентом из группы оксиранов.

Однако чтобы соответствовать требованиям, предъявляемым к современным сорбентам для ионной хроматографии, анионообменники должны обеспечивать все более эффективное и экспрессное определение неорганических анионов.

Задачей изобретения является создание более эффективного сорбента для одновременного экспрессного определения поляризуемых и неполяризуемых неорганических анионов с повышенной эффективностью.

Технический эффект при этом заключается в дальнейшем снижении влияния матрицы на удерживание поляризуемых анионов.

Поставленная задача решается созданием анионообменного сорбента для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов на основе сополимера стирола и дивинилбензола с четвертичной аммониевой функциональной группой, химически привитой к сополимеру посредством алкильного или ацильного радикала (R1), при этом четвертичная аммониевая функциональная группа содержит один метильный и два 2-гидроксипропильных радикала и общая формула сорбента соответствует формуле (1).

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

где R1 выбран из ряда: СН-СН3, С(O)(СН2)n, (CH2)n, и n=1-6

а R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал).

Одним из конкретных соединений этой формулы может быть:

соединение общей формулы (1.1).

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

Или соединение общей формулы (1.2).

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

Или соединение общей формулы (1.3).

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

Или соединение общей формулы (1.4).

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

Еще одним аспектом изобретения является способ получения анионообменного сорбента для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов формулы 1, включающий последовательное проведение в органическом растворителе трех стадий:

- модифицирования матрицы на основе сополимера стирола и дивинилбензола путем ее ацилирования, алкилирования или хлорметилирования;

- аминирования полученного продукта с помощью метиламина;

- алкилирования аминогруппы реагентом из группы оксиранов в присутствии основания.

Ацилирование предпочтительно проводить уксусным ангидридом или ω-хлорацилхлоридом.

Алкилирование на первой стадии предпочтительно проводить н-бромалкеном.

Хлорметилирование предпочтительно проводить с использованием хлористого тионила.

В качестве реагента из группы оксиранов на третьей стадии предпочтительно использовать эпихлоргидрин.

На фиг.1 представлены хроматограммы, полученные на анионообменниках формулы 1.1, имеющих различную емкость, при использовании различных элюентов, где А - сорбент с большей емкостью, изократический режим, В - с меньшей, градиентный.

При этом:

Изократический режим. Элюент: 24 мМ NaHCO3. F=1,0 мл/мин.

Градиентный режим. Элюент: 5-40 мМ NaOH. F=0,7 мл/мин.

В таблице 1 приведены эффективности (тт/м) колонки с сорбентом по предлагаемому изобретению для поляризуемых и неполяризуемых неорганических анионов.

В таблице 2 приведены коэффициенты асимметрии пиков (AS) некоторых анионов на сорбенте-прототипе и на сорбенте по предлагаемому изобретению (фиг.1А), полученные в изократическом режиме элюирования.

Схема получения предлагаемого сорбента может быть представлена в следующем виде

анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

Модифицирование полистирол-дивинилбензола (ПС-ДВБ) проводят ацилированием (реагент - уксусный ангидрид или со-хлорацилхлориды), алкилированием (реагент - бромалкены с различной длиной цепи) или хлорметилированием (реагент - хлористый тионил).

Аминирование проводят метиламином.

Если на стадии модифицирования ПС-ДВБ используют уксусный ангидрид, то проводят восстановительное аминирование метиламином в форме кислой соли в присутствии восстановителя - цианоборгидрида натрия. Одним из примеров получаемого при этом соединения является соединение формулы 1.1.

Если на стадии модифицирования ПС-ДВБ используют ω-хлорацилхлорид, то далее проводят простое аминирование раствором метиламина. Одним из примеров получаемого при этом соединения является соединение формулы 1.2.

И бромалкилирование и хлорметилирование на первой стадии дают в сочетании с обычным аминированием в конечном итоге сорбент, типичным представителем которого является соединение формулы 1.3.

Алкилирование оксираном в присутствии основания - одинаково для всех типов сорбентов.

Приведенные примеры подтверждают, но не ограничивают предлагаемое изобретение.

Пример 1 Способ получения анионообменного сорбента на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой, формулы 1.1.

1) Ацилирование

Готовят суспензию 1 г сополимера стирола и дивинилбензола с содержанием дивинилбензола 25% и диаметром зерен 3,3±0,2 мкм в 20 мл дисульфида углерода и оставляют на 2 часа для набухания. Затем добавляют 3 г порошка безводного хлорида алюминия и по каплям приливают 0,04 моль уксусного ангидрида при быстром перемешивании. Реакционную смесь перемешивают со скоростью 250 об/мин в течение 6 часов при температуре 50°С. Образовавшийся продукт отфильтровывают на стеклянном фильтре и промывают последовательно 10%-ой соляной кислотой, 10%-ым гидроксидом натрия, водой и этанолом, после чего оставляют на фильтре до полного высушивания в эксикаторе над CaCl2.

2) Восстановительное аминирование

В качестве метиламина в форме кислой соли был взят гидрохлорид диметиламина, в качестве восстановителя - цианоборгидрид натрия.

1 г продукта, полученного на первой стадии, помещают в колбу на 100 мл, добавляют 5 г гидрохлорида диметиламина, 0,35 г цианоборогидрида натрия и 20 мл метанола. Реакционную смесь перемешивают 22 часа при температуре 67°С со скоростью 250 об/мин, затем подкисляют концентрированной соляной кислотой до рН≤2. Полученный аминосополимер с функциональной группой диметиламина отфильтровывают, промывают 10%-ой соляной кислотой, 10%-ым раствором гидроксида натрия, водой до нейтральной реакции и этанолом, затем высушивают на фильтре в эксикаторе над CaCl2.

3) Алкилирование эпихлоргидрином

Готовят суспензию 1 г аминосополимера, полученного на второй стадии, в спирте, добавляют в качестве основания 3 г карбоната натрия в 10 мл воды и 0,16 моль эпихлоргидрина. Реакционную смесь перемешивают при температуре 70°С в течение 20 часов. По истечении указанного времени продукт реакции отфильтровывают, промывают водой и этанолом.

Полученный сорбент представляет собой сополимер стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой. Анионообменная емкость составляет 0,098±0,009 ммоль/г (n=3, Р=0,95).

При проведении стадии алкилирования при температуре 60°С в течение 10 часов емкость полученного сорбента составляет 0,038±0,004 ммоль/г (n=3, Р=0,95).

Пример 2 Способ получения анионообменного сорбента на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы н-валерильным радикалом, формулы 1.2.

1) Ацилирование

Навеску матрицы массой 1 г помещают в трехгорлую колбу объемом 100 мл, добавляют 12,5 мл дихлорметана и оставляют для набухания на 2 часа. После этого добавляют 0,01 моль 5-хлорвалероилхлорида и перемешивают реакционную смесь при комнатной температуре и скорости 200 об/мин в течение 15 мин. Реакцию ацилирования инициируют добавлением 0,2 г безводного хлорида алюминия, при этом цвет реакционной смеси становится бурым. По истечении 10 минут реакцию прекращают добавлением 50 мл тетрагидрофурана. Образовавшийся продукт отфильтровывают и промывали следующими растворами: вода-тетрагидрофуран (1:1), 2 М соляная кислота, вода и этанол, затем оставляют до полного высушивания на фильтре в эксикаторе над CaCl2.

2) Аминирование

Готовят суспензию из 1 г ацилированного полистирол-дивинилбензола, полученного на первой стадии, в 15 мл ацетонитрила и оставляют на 2 часа для набухания. Затем добавляют 0,25 моль метиламина и перемешивают в течение 14 часов при температуре 70°С. По истечении указанного времени для прекращения продукт реакции отфильтровывают, промывают дистиллированной водой и этанолом. После этого полученный анионообменник оставляли на фильтре до полного высушивания в эксикаторе над CaCl3.

3) Алкилирование эпихлоргидрином

Готовят суспензию 1 г аминосополимера, полученного на второй стадии, в спирте, добавляют в качестве основания 3 г карбоната натрия в 10 мл воды и 0,16 моль эпихлоргидрина. Реакционную смесь перемешивают при температуре 70°С в течение 20 часов. По истечении указанного времени продукт реакции отфильтровывают, промывают водой и этанолом.

Полученный сорбент представляет собой сополимер стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы н-валерильным радикалом. Анионообменная емкость составляет 0,042±0,004 ммоль/г (n=3, Р=0,95).

Пример 3 Способ получения анионообменного сорбента на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы метальным радикалом формулы 1.3

1) Хлорметилирование

Навеску матрицы массой 1 г помещают в трехгорлую колбу объемом 100 мл. Для смачивания сополимера добавляют 3-5 мл концентрированной уксусной кислоты. Смесь оставляют на 1 час, после чего при перемешивании добавляют 20 мл раствора формалина. Затем реакционную колбу помещают в ледяную воду и охлаждают до 3°С и к ней при непрерывном перемешивании медленно по каплям добавляют 10,8 мл хлористого тионила (температура смеси не должна превышать 3-7°С), а потом добавляют 9,3 мл концентрированной хлорсульфоновой кислоты и в течение 15 мин перемешивают при температуре 3°С. Затем температуру смеси повышают до 35°С и перемешивают при этой температуре в течение 16 часов. По истечении указанного времени содержимое колбы охлаждают до 3°С и для прекращения реакции по каплям добавляют 25 мл дистиллированной воды. Образовавшийся продукт отфильтровывают на стеклянном фильтре, промывают под вакуумом 10%-ным раствором гидроксида натрия, затем дистиллированной водой до нейтральной реакции и 2-3 порциями по 10 мл этанола и оставляют на фильтре до полного высушивания в эксикаторе над CaCl2.

2) Аминирование (аналогично примеру 2)

Готовят суспензию 1 г хлорметилированного полистирол-дивинилбензола, полученного на первой стадии, в 15 мл ацетонитрила и оставляют на 2 часа для набухания. Затем добавляют 0,25 моль метиламина и перемешивают в течение 14 часов при температуре 70°С. По истечении указанного времени для прекращения продукт реакции отфильтровывают, промывают дистиллированной водой и этанолом. После этого полученный анионообменник оставляли на фильтре до полного высушивания в эксикаторе над CaCl2.

3) Алкилирование эпихлоргидрином так же, как в примере 2.

Готовят суспензию 1 г аминосополимера, полученного на второй стадии, в спирте, добавляют в качестве основания 3 г карбоната натрия в 10 мл воды и 0,16 моль эпихлоргидрина. Реакционную смесь перемешивают при температуре 70°С в течение 20 часов. По истечении указанного времени продукт реакции отфильтровывают, промывают водой и этанолом.

Полученный сорбент представляет собой сополимер стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы метильным радикалом. Анионообменная емкость составляет 0,061±0,006 ммоль/г (n=3, Р=0,95).

Пример 4 Способ получения анионообменного сорбента на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы н-пентильным радикалом, формулы 1.4.

1) Алкилирование

1 г матрицы суспензируют в 5,3 мл 1,2-дихлорпропана при комнатной температуре в колбе на 100 мл. После перемешивания в течении 10 мин добавляют 0,63 г трифторметансульфоновой кислоты, реакционная смесь при этом окрашивается в вишнево-красный цвет. Затем медленно по каплям добавляют смесь 1,66 мл 5-бром-1-пентена и 1,66 мл 1,2-дихлорпропана. После этого реакционную смесь перемешивают в течение 48 ч при 50°С. По истечении времени смесь охлаждают до 10°С для прекращения реакции, фильтруют и промывают последовательно тетрагидрофураном, соляной кислотой, дистилированной водой, 2-пропанолом, метанолом и ацетоном.

2) Аминирование (полностью аналогично примеру 2)

3) Алкилирование (полностью аналогично примеру 2)

Анионообменная емкость составляет 0,033±0,003 ммоль/г (n=3, Р=0,95).

Пример 5. Ионохроматографическое определение поляризуемых и неполяризуемых неорганических анионов с помощью анионообменного сорбента на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой, формулы 1.1

Полученные в примере 1 анионообменные сорбенты на основе сополимера стирола и дивинилбензола с химически привитой ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой, набивают в хроматографические колонки размером 4×50 мм под давлением 250 бар и проводят ионохроматографическое разделение смеси поляризуемых и неполяризуемых анионов в варианте ионной хроматографии с подавлением фоновой электропроводности. В качестве подвижных фаз при работе в изократическом режиме элюирования используют растворы карбоната, гидрокарбоната и гидроксида натрия, в градиентном - гидроксид натрия.

Сорбент с ди(3-хлор-2-гидроксипропил)-N-метиламмониевой функциональной группой, удаленной от бензольного кольца матрицы третичным атомом углерода с боковой метильной группой, имеющий большую емкость (0,098±0,009 ммоль/г), демонстрирует хорошую разделяющую способность и в изократическом режиме элюирования позволяет за 10 минут проводить разделение смеси 7 поляризуемых и неполяризуемых анионов: фторида, формиата, хлорида, нитрита, бромида, фосфата и сульфата. Сорбент аналогичной формулы, имеющий меньшую емкость (0,038±0,004 ммоль/г) пригоден для работы в градиентном режиме элюирования, при этом менее чем за 8 минут возможно проводить разделение смеси поляризуемых и неполяризуемых анионов: фторида, хлорида, нитрита, бромида, нитрата, фосфата и сульфата. (В то время как сорбенты, полученные по способу-прототипу проводят разделение аналогичных смесей смеси практически за 30 минут) Хроматограммы смесей представлены на фиг.1, а в таблице 1 представлены эффективности (тт/м) (Теоретические тарелки на метр.) колонок с сорбентами для поляризуемых и неполяризуемых неорганических анионов при использовании в качестве элюентов раствора 24 мМ NaHCO3 в изократическом режиме или раствора гидрокида натрия в диапазоне 5-40 мМ в градиентном режиме. Как видно из таблицы, значения эффективностей и в изократическом и в градиентном режимах высоки как для неполяризуемых, так и для поляризуемых анионов. Для поляризуемых нитрат- и бромид ионов максимальные эффективности составляют 12000 и 16000 тт/м соответственно. Кроме того, наблюдается улучшение формы пика, в особенности для поляризуемых нитрита, бромида и нитрата, по сравнению с менее гидрофильным сорбентом из патента-прототипа, что подтверждается данными табл.2, где приведены коэффициенты асимметрии пиков (AS) некоторых анионов на сорбенте-прототипе и на сорбенте по предлагаемому изобретению (фиг.1А), полученные в изократическом режиме элюирования.

AS - отношение двух отрезков, образуемых на горизонтальной линии, проведенной на высоте 10% от основания пика, при ее пересечении с вертикалью, опущенной из вершины пика. При этом берется отношение "тыльного" отрезка к "фронтальному". Коэффициент асимметрии должен приближаться к 1 и для колонок с сорбентом хорошего качества составляет 0.8-1.3.

Исходя из высоких значений эффективностей для поляризуемых анионов и значительного улучшения формы пиков по сравнению с менее гидрофильным сорбентом (табл.2) можно сделать вывод, что неионообменные взаимодействия с матрицей уже не вносят существенного вклада в удерживание этих анионов.

Аналогичные результаты были получены для всех заявляемых соединений.

Приведенные примеры подтверждают, что использование сорбента на основе сополимера стирола и дивинилбензола заявляемой формулы приводит к дальнейшему снижению влияния матрицы на удерживание поляризуемых анионов. Результатом является резкое возрастание эффективности сорбента по поляризуемым анионам, размывание их пиков становится незначительным, в ряду удерживания они занимают место, традиционное для этих анионов в ионной хроматографии. Предлагаемый сорбент демонстрирует очень хорошую селективность и обеспечивает возможность разделения смеси семи анионов. Важно заметить, что форма пиков поляризуемых анионов на данном сорбенте существенно лучше, чем на сорбенте из патента-прототипа, что подтверждается данными табл.2 и связано со снижением влияния матрицы при введении дополнительного гидрофильного радикала. Кроме того время проведения анализа снижается в три раза (с 30 до 10 мин).

1. Анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов на основе сополимера стирола и дивинилбензола с четвертичной аммониевой функциональной группой, химически привитой к сополимеру посредством алкильного или ацильного радикала (R1), при этом четвертичная аммониевая функциональная группа содержит один метильный и два 2-гидроксипропильных радикала, и общая формула сорбента соответствует формуле (1):
анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571
где R1 - выбран из ряда: СН-СН3, С(O)(СН2)n, (СН3)n, (n=1-6), a R2 - выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал).

2. Анионообменный сорбент по п.1, отличающийся тем, что он представляет собой соединение общей формулы (1.1):
анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

3. Анионообменный сорбент по п.1, отличающийся тем, что он представляет собой соединение общей формулы (1.2):
анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

4. Анионообменный сорбент по п.1, отличающийся тем, что он представляет собой соединение общей формулы (1.3):
анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

5. Анионообменный сорбент по п.1, отличающийся тем, что он представляет собой соединение общей формулы (1.4):
анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления, патент № 2496571

6. Способ получения анионообменного сорбента для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов, общая формула которого соответствует формуле 1, включающий последовательное проведение в органическом растворителе трех стадий:
- модифицирования матрицы из сополимера стирола и дивинилбензола путем ее ацилирования, алкилирования или хлорметилирования;
- аминирования полученного продукта с помощью метиламина;
- алкилирования аминогруппы реагентом из группы оксиранов в присутствии карбоната натрия.

7. Способ по п.6, отличающийся тем, что для ацилирования используют уксусный ангидрид или ω-хлорацилхлорид.

8. Способ по п.6, отличающийся тем, что для алкилирования на первой стадии используют н-бромалкен.

9. Способ по п.6, отличающийся тем, что хлорметилирование проводят в присутствии хлористого тионила.

10. Способ по п.6, отличающийся тем, что в качестве реагента из группы оксиранов на третьей стадии предпочтительно используют эпихлоргидрин.

Наверх