способ вскрытия шеелитовых концентратов
Классы МПК: | |
Патентообладатель(и): | |
Приоритеты: |
подача заявки:
0000-00-00 публикация патента:
00.00.0000 |
Изобретение относится к способу вскрытия шеелитовых концентратов растворами. Способ включает предварительную механообработку исходного сырья и последующую обработку активированного материала раствором соды Na2CO3. При этом предварительную механообработку проводят до достижения количества энергии, усвоенной в виде поверхности областей когерентного рассеивания, равной 25-27 кДж/моль шеелита, и количества энергии, усвоенной в виде микродеформаций, равной не менее 2,3 кДж/моль шеелита. Обработку раствором соды Na2CO3 проводят при температуре 99°С. Техническим результатом является упрощение процесса вскрытия за счет проведения процесса выщелачивания при атмосферном давлении и пониженной температуре. 1 табл.
Описание изобретения к патенту
Изобретение относится к металлургии редких металлов, в частности к процессам вскрытия минералов тугоплавких металлов.
Шеелит относится к достаточно трудновскрываемым минералам, что иллюстрируется многообразием способов переработки шеелитовых концентратов.
Известен способ спекания шеелита с содой (Зеликман А.Н., Меерсон Г.А. Металлургия редких металлов. - М. Металлургия, 1973. С.35-37). Процесс проводят при температуре 800-900°С со значительным избытком соды (50-100% от стехиометрии). Полученные спеки выщелачивают водой при температуре 80-90°С. Процесс многостадийный.
Недостатками данного способа являются: высокие температура и энергоемкость процесса; опасность разъедания футеровки печи активным плавом; необходимость разубоживания концентрата до содержания WO3 20-22%
Известен также способ разложения шеелитовых концентратов растворами фтористого натрия в автоклавах (там же, с.45-47). Процесс многостадийный, характеризуется значительным избытком реагента.
Известен также способ фторирования шеелитовых концентратов (Карелин В.А., Карелин В.И. Фторидная технология переработки концентратов редких металлов. - Томск: Изд-во НТЛ, 2004. С.166-172). Процесс двухстадийный, проводится в плазменном реакторе при температурах: на первой стадии - более 2000°С; на второй - при 350°С. Помимо использования активного фтора процесс осложняется использованием специального оборудования.
Известен также способ автоклавно-содового вскрытия шеелитового концентрата с применением предварительной механоакивации в центробежной планетарной мельнице (Медведев А.С. Выщелачивание и способы его интенсификации. - М.: МИСиС. 2005. С.122-125). Предварительная механообработка в планетарной мельнице с развиваемым ускорением 25 g проводилась в течение 5-15 мин. Активации подвергались как сухие, так и пульпа концентрата с водой (активация в «мокром» режиме). После механообработки твердая составляющая отделялась от воды фильтрацией и подвергалась обработке растворами соды в автоклаве при температуре 225°С, Т:Ж=1:4 и продолжительности 2 часа.
В результате извлекалось: без активации 93,7%, после 9 мин. активации 99,4%.
Данный способ по совокупности сходных признаков: использование в качестве реагента содового раствора; проведение предварительной механоактивации, принят нами за прототип.
Недостатками данного способа являются: использование аппаратов высокого давления (до 2,5 МПа); многостадийность процесса. Степень активации определяется только по продолжительности механообработки, что при изменении параметров активации или активатора не дает возможности практического применения данного способа ввиду отсутствия методов контроля за количеством усвоенной энергии.
Кроме того, как показано в работе А.С. Медведева, степень извлечения ценного компонента сильно зависит от условий переработки активированного сырья.
Изобретение решает задачу упрощения процессов вскрытия шеелитовых концентратов, снижения энергозатрат как на стадии предварительного активирования, так и на стадии переработки активированного материала.
Поставленная задача решается тем, что в способе вскрытия шеелитовых концентратов растворами Na2CO3, включающего предварительную механообработку исходного сырья и последующую обработку активированного материала указанными растворами, согласно изобретению, предварительную обработку проводят до количеств энергий усвоенных в виде поверхности областей когерентного рассеивания равной 25-27 кДж/моль шеелита и микродеформаций не менее 2,3 кДж/моль шеелита, а последующую обработку растворами На2СО3 проводят при температуре 99°С.
Оценку количества усвоенной энергии проводили по методике изложенной в работе Е.В. Богатыревой, А.Г. Ермилова «Оценка доли энергии, запасенной при механической активации минерального сырья» Неорганические материалы, 2008, том 44, с.242-247.
Оценка количества усвоенной энергии позволяет не только оценить, но и контролировать реакционную способность активированного материала не по степени или скорости его реагирования, то есть на конечном этапе вскрытия, а по степени его структурных нарушений сразу после извлечения из активатора.
Технический результат - упрощение процесса вскрытия достигается за счет проведения процесса выщелачивания при атмосферном давлении и пониженной температуре в обычном агитаторе. Применения автоклавов при этом не требуется. Процесс извлечения WO3 одностадийный.
Технический результат - снижение энергозатрат достигается как за счет снижения продолжительности механообработки, так и за счет снижения температуры выщелачивания.
Наибольший эффект активирования проявляется при количествах энергий усвоенных в виде поверхности областей когерентного рассеивания равной 25-27 кДж/моль шеелита и микродеформаций не менее 2,3 кДж/моль шеелита. Степень извлечения при этом составляет 97-99%. У неактивированного шеелита, в тех же условиях вскрытия, она составила 30%.
Снижение количества усвоенной энергии в виде областей когерентного рассеивания до 10 кДж/моль шеелита и микродеформации до 0,09 кДж/моль шеелита сопровождается снижением степени извлечения WO3 до 90% (в тех же условиях).
Повышение количества усвоенной энергии в виде областей когерентного рассеивания до 29-31 кДж/моль шеелит и микродеформации до 0,78-2,05 кДж/моль шеелита также сопровождается снижением степени извлечения ценного компонента до 91-92%, что может быть объяснено повышением реакционной способности сопутствующих фаз и снижением количества энергии, запасенной в виде микродеформаций.
Механоактивации подвергали шеелитовый концентрат крупностью ~90% фракции - 0,071 мкм, содержащего, %: W 35,6; Са 22,3; Si 1,23; Р 1,19; S 0,46; Cu 0,16.
Активацию проводили в центробежной планетарной мельнице марки ЛАИР-0.015.
Мш:Мк - соотношение массы мелющих тел и массы загруженного концентрата.
τа - продолжительность механообработки (активации).
ΔEs - количество энергии, усвоенной в виде поверхности областей когерентного рассеивания.
ΔEε - количество энергии, усвоенной в виде микродеформаций.
Т:Ж - соотношение твердой и жидкой составляющих в пульпе при выщелачивании.
Конкретные примеры исполнения представлены в таблице.
WO3 раствор
Представленные данные показывают, что количество усвоенной энергии в виде областей когерентного рассеивания и микродеформаций коррелируется со степенью извлечения ценного компонента. Данные по условиям механоактивации приведены поскольку это единственные реперы на сегодняшний день, используемые большинством исследователей.
Способ вскрытия шеелитовых концентратов, включающий предварительную механообработку исходного сырья и последующую обработку активированного материала раствором соды Na2CO3, отличающийся тем, что предварительную механообработку проводят до достижения количества энергии, усвоенной в виде поверхности областей когерентного рассеивания, равной 25-27 кДж/моль шеелита, и количества энергии, усвоенной в виде микродеформаций, равной не менее 2,3 кДж/моль шеелита, а последующую обработку раствором соды Na2CO3 проводят при температуре 99°С.