способ определения энергетического спектра гамма-квантов

Классы МПК:G01V5/04 специально предназначенные для скважинного каротажа
Автор(ы):, ,
Патентообладатель(и):Федеральное бюджетное учреждение "12 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" (RU)
Приоритеты:
подача заявки:
2012-06-08
публикация патента:

Изобретение относится к области спектрометрии гамма-квантов и может быть использовано в различных областях физических исследований, в т.ч. при испытаниях изделий электронной техники на радиационную стойкость. Сущность изобретения заключается в том, что с помощью известных дозиметров измеряют экспозиционные дозы гамма-квантов сначала от одного источника излучений, затем последовательно от двух, трех и т.д. до n-источников, от которых определяется искомый спектр гамма-квантов, при постоянной схеме их размещения относительно дозиметра, рассчитывают вклад (способ определения энергетического спектра гамма-квантов, патент № 2497157 ) гамма-квантов от разных источников в показания дозиметров путем решения системы рекурентных уравнений, в правой части которых представлены формулы для расчета поглощенных доз гамма-квантов в воздухе, а в левой - результаты измерений экспозиционных доз. По значениям способ определения энергетического спектра гамма-квантов, патент № 2497157 определяют энергетические спектры гамма-квантов. Технический результат - упрощение методики определения спектра гамма-квантов в полях излучений от разных источников, возможность применения способа в слабых и в интенсивных полях излучений, на статических и импульсных установках. 1 табл.

Формула изобретения

Способ определения энергетического спектра гамма-квантов от нескольких источников излучений, основанный на измерении экспозиционной дозы и расчете поглощенной дозы гамма-квантов в воздухе, отличающийся тем, что экспозиционные дозы гамма-квантов измеряют сначала от одного источника излучений, затем последовательно от двух, трех и т.д. до n-источников при постоянной схеме их размещения относительно дозиметра, рассчитывают вклад гамма-квантов от i-1 группы источников в поглощенную дозу гамма-квантов от i-источников путем решения системы рекурентных уравнений

способ определения энергетического спектра гамма-квантов, патент № 2497157 , i=2,3,способ определения энергетического спектра гамма-квантов, патент № 2497157 ,n,

где Di и Di-1 - результаты измерений экспозиционных доз гамма-квантов соответственно от i и i-1 групп источников;

Ji-1 и J1 - значения поглощенных доз гамма-квантов в воздухе соответственно от i-1 источников и источника, не входящего в группу i-1, вычисляемые по формулам способ определения энергетического спектра гамма-квантов, патент № 2497157 способ определения энергетического спектра гамма-квантов, патент № 2497157

способ определения энергетического спектра гамма-квантов, патент № 2497157 i-1(E) и способ определения энергетического спектра гамма-квантов, патент № 2497157 1(E) - энергетические спектры гамма-квантов соответственно от i-1 источников и источника, не входящего в группу i-1;

µ(E) - массовый коэффициент поглощения кванта с энергией Е;

способ определения энергетического спектра гамма-квантов, патент № 2497157 i-1 - вклад гамма-квантов от i-1 группы источников в поглощенную дозу гамма-квантов от i-источников;

n - количество источников, от которых определяется искомый спектр гамма-квантов,

а энергетический спектр гамма-квантов способ определения энергетического спектра гамма-квантов, патент № 2497157 i(E) от i-источников излучений определяют по формуле

способ определения энергетического спектра гамма-квантов, патент № 2497157 .

Описание изобретения к патенту

Изобретение относится к области спектрометрии гамма-квантов и может быть использовано в различных областях физических исследований, в т.ч. при испытаниях изделий электронной техники на радиационную стойкость.

Известен способ [1] определения энергетического спектра импульсного ионизирующего излучения малой длительности по функции пропускания тонкого пучка в газе, определяемой путем измерения времен дрейфа ионов в камере от места их образования до собирающего электрода. Однако способ не применим на установках, работающих в статическом режиме.

Способ спектрометрии гамма-излучения [2] по регистрации потоков гамма-квантов с помощью набора детекторов, отградуированных на источниках с известными энергиями гамма-линий трудоемок и неоперативен, т.к. требует длительного проведения градуировочных операций на реперных источниках. Кроме того, способ трудно реализуем в интенсивных полях излучений, например, на исследовательских ядерных реакторах.

Определение энергии гамма-квантов с использованием полупроводникового кремниевого детектора [3] осуществляется путем регистрации вторичных электронов, образующихся при взаимодействии квантов с материалом детектора. Недостаток способа заключается в том. что использование Si детектора сужает определяемый энергетический спектр гамма-излучения, т.к. объем чувствительной области кремния не велик, и использовать его можно для спектрометрии частиц с небольшим пробегом. Этим способом можно получить энергетические спектры импульсов только от комптоновских электронов, следовательно, имеются ограничения по регистрируемым энергиям квантов. Кроме того, некоторые типы полупроводниковых детекторов требуют охлаждения до очень низких температур, что усложняет методику измерений.

Известен способ определения энергетического спектра рентгеновского излучения с помощью сцинтилляционного анализатора [4]. К недостаткам этого способа следует отнести невозможность использования сцинтилляционных детекторов в интенсивных полях излучений, а также в счетном режиме работы аппаратуры, что связано с ограниченным быстродействием детекторов и электрических схем обработки импульсов. Кроме того, обработка аппаратурного спектра требует больших затрат времени.

Энергетические спектры гамма-квантов вблизи источников излучений, например, активных зон реакторов, могут быть определены путем решения уравнения переноса гамма-квантов методом Монте-Карло [5-6]. Основной проблемой здесь является подготовка ядерно-физических констант и расчетной модели, на уточнение которой в базовых экспериментах уходит много времени.

Наиболее близким по техническому решению задачи (прототипом изобретения) является способ, основанный на измерении экспозиционной дозы квантового излучения термолюминесцентными или другими дозиметрами за поглощающими фильтрами различной толщины [7].

Экспозиционная доза (Di) за фильтрами связана с искомым спектром способ определения энергетического спектра гамма-квантов, патент № 2497157 (Е) квантового излучения следующим соотношением:

способ определения энергетического спектра гамма-квантов, патент № 2497157

где Gi(E) - энерговыделение в детекторе за фильтром i-толщины для кванта с энергией Е;

n - число фильтров, используемых при измерениях.

Для определения способ определения энергетического спектра гамма-квантов, патент № 2497157 (Е) необходимо решить систему интегральных уравнений Фредгольма 1-го рода, где левая часть представляет собой результаты измерений доз гамма-квантов за фильтрами различной толщины. Эта задача относится к классу так называемых некорректных задач и решается методом регуляризации А.Н.Тихонова с учетом априорных сведений об искомом спектре, полученных в косвенных экспериментах [8]. Следует отметить, что точность восстановления спектрального распределения в методе поглощающих фильтров непосредственно зависит от достоверности априорных сведений об измеряемом спектре. Кроме того, в процессе реализации данного способа возникают методические проблемы, связанные с возможным разрушением детекторов осколками мишени, а также со сложностями извлечения детекторов из контейнера.

Техническим результатом изобретения является упрощение методики определения спектра гамма-квантов в полях излучений от разных источников и расширение области применения способа.

Технический результат достигается тем, что экспозиционные дозы гамма-квантов измеряют сначала от одного источника, затем последовательно от двух, трех и т.д. до n-источников при постоянной схеме их размещения относительно дозиметра, рассчитывают вклад (способ определения энергетического спектра гамма-квантов, патент № 2497157 i-1) гамма-квантов от i-1 группы источников в поглощенную дозу гамма-квантов от i-источников путем решения системы рекурентных уравнений

способ определения энергетического спектра гамма-квантов, патент № 2497157

где Di и Di-1 - результаты измерений экспозиционных доз гамма-квантов соответственно от i и i-1 групп источников;

Ji-1 и J1 - расчетные значения поглощенных доз гамма-квантов в воздухе соответственно от i-1 источников и источника, не входящего в группу i-1;

n - количество источников, от которых определяется искомый спектр гамма-квантов.

Энергетический спектр гамма-квантов способ определения энергетического спектра гамма-квантов, патент № 2497157 i(Е) в поле излучений от i-источников определяют по формуле

способ определения энергетического спектра гамма-квантов, патент № 2497157

где способ определения энергетического спектра гамма-квантов, патент № 2497157 i-1(E) и способ определения энергетического спектра гамма-квантов, патент № 2497157 1(Е) - энергетические спектры гамма-квантов соответственно от i-1 источников и источника, не входящего в группу i-1.

Поглощенную дозу гамма-квантов в воздухе (J) рассчитывают по формуле

способ определения энергетического спектра гамма-квантов, патент № 2497157

где способ определения энергетического спектра гамма-квантов, патент № 2497157 (Е) - энергетический спектр гамма-квантов;

µ(Е) - массовый коэффициент поглощения кванта с энергией Е.

Условия, при которых возможна реализация предлагаемого способа:

- количество источников гамма-квантов, от которых формируется искомый спектр, должно быть не менее двух, максимальное количество источников не ограничивается;

- необходима справочная информация о спектральном составе гамма-квантов от каждого источника, которая доступнее и надежнее, чем априорная информация об искомом спектре, используемая в способе-прототипе, сведения о других характеристиках излучений не требуются;

- при проведении серии измерений от разных групп источников должна соблюдаться постоянная схема их размещения относительно дозиметра;

- выбранные средства измерений должны обеспечивать надежную регистрацию экспозиционных доз гамма-квантов с учетом мощностных и дозовых характеристик используемых источников.

Последовательность выполнения операций выглядит следующим образом.

На первом этапе в исследуемой точке пространства измеряют экспозиционную дозу гамма-квантов сначала от одного, затем от двух источников, а также рассчитывают поглощенные дозы в воздухе от каждого из этих источников по формуле (4). Используя уравнение (2). рассчитывают вклад гамма-квантов от первого источника в показания дозиметров от двух источников, а затем по уравнению (3) определяют спектр гамма-квантов от двух источников.

На втором этапе (при наличии более двух источников) подключают к измерениям и расчетам третий источник. В этом случае решают уравнение (4) раздельно для определения J от первых двух источников со спектром гамма-квантов, вычисленным на первом этапе, и от третьего источника (J1). Подставляя эти значения в уравнение (2), определяют вклад гамма-квантов от первых двух источников в показания дозиметров от трех источников. Количество измерений равно числу источников, от которых определяется требуемый спектр гамма-квантов.

Проверка способа проводилась в поле излучений от двух источников гамма-квантов: исследовательского ядерного реактора ПРИЗ-М (12 ЦНИИ МО РФ) и устройства, конвертирующего нейтроны в гамма-кванты, применяемого для увеличения вклада дозы гамма-квантов в испытательном объеме реактора. Устройства-конверторы представляют собой набор пластин водородосодержащего материала (плексигласа), чередующихся с пластинами кадмия [9]. В результате замедления нейтронов на ядрах водорода и радиационного захвата тепловых нейтронов кадмием образуется вторичное гамма-излучение, спектральный состав которого существенно отличается от энергетического спектра гамма-излучения реактора. В процессе радиационных исследований необходимо определить спектр гамма-квантов в смешанном поле излучений от этих источников. Мощные реакторные поля излучений не всегда позволяют использовать для этой цели известные способы-аналоги. Поэтому был применен предлагаемый способ.

Экспозиционные дозы гамма-квантов при работе реактора с конвертором (Dp+к ) и без конвертора (Dp) измерялись дозиметрами СГД-8 с широким диапазоном измерения доз (100-106) Р. По результатам измерений определено отношение Dp+к/D p, которое в данном случае равно 4, 3. Затем по формуле (2) вычислен вклад гамма-квантов от реактора в показания дозиметров от двух источников, который равен 0,32. Информация о спектрах гамма-квантов от реактора и кадмиевого конвертора, а также значения µ(Е) взяты из справочной литературы [10-12]. Результаты определения энергетического спектра гамма-квантов предложенным способом (строка 1) и методом статистических испытаний по программе Geant-4 (строка 2) приведены в таблице, где спектр представлен в виде потока гамма-квантов в разных энергетических группах в относительных единицах.

Спектральный состав гамма-квантов (в относительных единицах) в смешанном поле излучений от реактора ПРИЗ-М и кадмиевого конвертора
способ определения энергетического спектра гамма-квантов, патент № 2497157 Е, МэВ0,1-0,5 0,5-2,02,0-3,0 3,0-5,05,0-6,0 6,0-10,0
1 0,1330,3780,204 0,1890,052 0,044
2 0,1520,4050,214 0,1480,042 0,039

Из таблицы следует, что расхождение приведенных данных, полученных разными методами, не превышает 27%. Этот факт свидетельствуют о высокой надежности результатов определения энергетического спектра гамма-квантов предложенным способом.

Применение предлагаемого изобретения позволит упростить методику определения энергетического спектра гамма-квантов в полях излучений от разных источников. Для реализации способа не требуется сложной и дорогостоящей спектрометрической аппаратуры и априорных сведений об искомом спектре гамма-квантов. Способ может быть применим как в слабых, так и в интенсивных полях излучений, на статических и импульсных установках.

Источники информации

1. В.К. Ляпидевский. Способ определения энергетического спектра импульсного ионизирующего излучения малой длительности. Патент РФ, № 2189613, 2002.

2. Е.С. Кучурин, Н.Я. Шабалин и др. Способ гамма-спектрометрии. Патент РФ, № 2159451, 2000.

3. Е.С. Матусевич, В.П. Семенов, Л.А. Трыков Способ определения энергетического спектра гамма-излучения. Патент РФ, № 2067306, 1996.

4. Е.П. Боголюбов, В.И. Микеров и др. Рентгеновский анализатор. Патент РФ, № 2388015, 2010.

5. Б.А. Брискман, В.Д. Бондарев, А.Н. Захаров Расчет спектра гамма-излучения водо-водяного реактора методом Монте-Карло. Атомная энергия, 1974, т.37, вып.3, с.208-211.

6. Geant 4. Developments and Application, J. Allison et al., IEEE Transactions on Nuclear Science. 2006, No.1, p.270-278.

7. E.H. Волков, А.Ф. Коростелев, В.К. Петин и др. Методика измерения энергетического спектра импульсного тормозного излучения ускорителей в диапазоне энергий 50-3000 кэВ. Институт сильноточной электроники СО АН СССР, 1991.

8. А.И. Веретенников, В.М. Горбачев, Б.А. Предеин. Методы исследования импульсных излучений, Москва. Энергоатом издат, 1985, с.108.

9. Г.Л. Пикапов, А.И. Рымарь, С.В. Костяев, И.С. Краснокутский. Формирование поля гамма-нейтронного излучения на реакторе ПРИЗ-М для испытаний крупногабаритной техники на радиационную стойкость. Сборник «ВАНТ», серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, вып.2. 2011. с.62-64.

10. А.П. Пышко. Л.А. Трыков. И.П. Гомонов и др. Сопоставление расчетных и экспериментальных данных по спектрам нейтронного и гамма-излучений в окрестности статического реактора. Техническая справка. ГНЦ ФЭИ, 2008.

11. В.П. Маликович, А.В. Кудрявцева. Защита от ионизирующих излучений. Справочник. Москва. Энергоатомиздат, 1995.

12. Э. Сторм, X. Исраэль. Сечения взаимодействия гамма-излучения (для энергий 0,001-100 МэВ и элементов с 1 до 100). Справочник. Москва. Атомиздат 1973.

Класс G01V5/04 специально предназначенные для скважинного каротажа

способ гамма спектрометрии -  патент 2523081 (20.07.2014)
стабилизация коэффициента усиления гамма-сцинтилляционного детектора -  патент 2505842 (27.01.2014)
способ и устройство для обработки спектроскопических данных в скважине -  патент 2503979 (10.01.2014)
способ определения низкопроницаемых пластов в бурящейся скважине -  патент 2499137 (20.11.2013)
способ и композиция для определения геометрии трещин подземных пластов -  патент 2491421 (27.08.2013)
способ отвода паров криогенных жидкостей из криогенной системы погружного каротажного оборудования -  патент 2488147 (20.07.2013)
способ исследования скважины -  патент 2485310 (20.06.2013)
генератор излучения и конфигурация источника питания для скважинных каротажных приборов -  патент 2481600 (10.05.2013)
неразрушающее определение распределения пор по размерам и распределения движения флюида по скоростям -  патент 2475782 (20.02.2013)
способ выделения высокорадиоактивных пород-коллекторов -  патент 2472184 (10.01.2013)
Наверх