термоизоляционная масса
Классы МПК: | C04B28/26 силикаты щелочных металлов C04B111/20 сопротивление химическому, физическому или биологическому воздействию |
Автор(ы): | Сватовская Лариса Борисовна (RU), Масленникова Людмила Леонидовна (RU), Бабак Наталья Анатольевна (RU), Мархель Наталья Викторовна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" (RU) |
Приоритеты: |
подача заявки:
2012-06-27 публикация патента:
10.11.2013 |
Изобретение относится к строительным материалам и может быть использовано для изготовления изделий, предназначенных для теплоизоляции тепловых печных агрегатов и энергетического оборудования с температурой эксплуатации до 1150°C. Технический результат - повышение прочности. Термоизоляционная масса содержит кембрийску глину, огнеупорную глину, формоотход - отход от сталелитейного производства на основе кварцевого песка, доломит и череп, совместно молотые до остатка на сите 0,08 не более 1%, жидкое стекло плотностью 1,4-1,5 г/см3, отсев строительных отходов от разборки зданий с модулем крупности Mкр=2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%: жидкое стекло 28,0-30,0, указанный отсев 50,0-52,0, кембрийская глина 7,5-8,5, огнеупорная глина 3,5-4,5, указанный формоотход 3,5-4,5, доломит - 3,0-3,3, череп - 1,0-1,2. 1 пр., 2 табл.
Формула изобретения
Термоизоляционная масса, содержащая кембрийскую глину, огнеупорную глину, череп, доломит и формоотход - отход от сталелитейного производства на основе кварцевого песка, совместно молотые до остатка на сите 0,08 не более 1%, жидкое стекло плотностью 1,4-1,5 г/см3, отличающаяся тем, что дополнительно содержит отсев строительных отходов от разборки зданий с Mкр =2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%:
жидкое стекло плотностью 1,4-1,5 г/см 3 | 28,0-30,0 |
отсев строительных отходов от разборки зданий | |
с Mкр=2,7, на 80% состоящий из боя тяжелого | |
бетона на гранитном щебне | 50,0-52,0 |
кембрийская глина | 7,5-8,5 |
огнеупорная глина | 3,5-4,5 |
формоотход - отход от сталелитейного | |
производства на основе кварцевого песка | 3,0-4,5 |
доломит | 3,0-3,3 |
череп | 1,0-1,2 |
Описание изобретения к патенту
Настоящее изобретение относится к области строительных материалов, в частности к термоизоляционным массам, предназначенным для теплоизоляции тепловых, печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1150°C.
Известна термоизоляционная масса, (RU № 2370468, C04B 28/26, 18/14, 14/10, 35/66, 111/40, бюл. № 29, опубл. 20.10.2009) при следующих соотношениях компонентов, мас.%: жидкое стекло плотностью 1,4-1,5 г/см3 - 30,5-37,0, гранулированный доменный шлак с модулем крупности Mкр =2,0-2,8-45,0-48,0, кембрийская глина - 12,7-15,0, стеклобой - 0,7-0,9, череп - 1,0-1,2, гранитные отсевы - 1,8-2,2, доломит - 1,8-2,2.
Недостатком такой термоизоляционной массы является низкая прочность.
Наиболее близкой к заявляемой является термоизоляционная масса (RU № 2426707, C04B 28/26, 18/14, 35/66, 111/20, бюл. № 23, опубл. 20.08.2011) при следующих соотношениях компонентов, мас.%: жидкое стекло плотностью 1,4-1,5 г/см3 - 32,0-37,0, гранулированный доменный шлак с модулем крупности Mкр =2,0-2,8 - 46,0-48,0, кембрийская глина - 7,0-8,0, огнеупорная глина - 3,5-4,0, формоотход - 3,5-4,0, череп - 0,8-1,0, доломит - 2,2-3,0.
Недостатком такой термоизоляционной массы является низкая прочность.
Настоящее изобретение направлено на создание новой термоизоляционной массы с повышенной прочностью и одновременной утилизацией промышленных отходов.
Поставленная техническая задача достигается тем, что термоизоляционная масса, содержащая кембрийскую глину, огнеупорную глину, череп, доломит, и формоотход - отход от сталелитейного производства на основе кварцевого песка, совместно молотые до остатка на сите 0,08 не более 1%, жидкое стекло плотностью 1,4-1,5 г/см3, дополнительно содержит отсев строительных отходов от разборки зданий с Mкр=2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%:
жидкое стекло плотностью 1,4-1,5 г/см 3 | 28,0-30,0 |
указанный отсев строительных отходов от разборки зданий | 50,0-52,0 |
кембрийская глина | 7,5-8,5 |
огнеупорная глина | 3,5-4,5 |
указанный формоотход | 3,0-4,5 |
доломит | 3,0-3,3 |
череп | 1,0-1,2. |
В качестве связующего выбрано жидкое стекло Na2SiO3*nH2O (ГОСТ 13078-81, ТУ 113-08-00206457-28-93), изготавливаемое из растворимого силиката натрия.
В качестве заполнителя и отвердителя используется техногенный продукт - отсев строительных отходов от разборки зданий с Mкр=2,7 на 80% представленный боем тяжелого бетона, в состав которого входит гранитный щебень и цементная составляющая (гидросиликаты и алюмосиликаты кальция и магния), также в состав отсева входит бой кирпича (силикаты и алюмосиликаты кальция), небольшое количество боя стекла и выгорающей органики - щепы и полистирола.
Кембрийская глина - легкоплавкая, полукислая, низкодисперсная, с низким содержанием крупнозернистых включений, насыпная плотность 1450 кг/м3, интервал спекания 50-100°C. Огнеупорная глина представлена латненской глиной (месторождение ст. Латное Воронежской обл.), которая отличается повышенным содержанием плавней и высокой степенью измельчения частиц, часть которых имеет коллоидальный характер. Данные химического анализа глин представлены в таблице 1.
Формоотход является отходом от сталеплавильного производства, на 98% состоящий из кварцевого песка с остатками частично не выгоревшей органики и жидкого стекла. Возможно небольшое присутствие окалины.
Таблица 1 | ||||||||
Химический состав кембрийской и латненской глин, мас.% | ||||||||
Глина | SiO2 | TiO2+Al2O3 | Fe2O3 | CaO | MgO | K2 O+Na2O | SO3 | П.п.п. |
кембрийская | 62,83 | 17,29 | 6,64 | 1,24 | 2,73 | 4,5 | 0,54 | 4,26 |
латненская | 47,4 | 36,7 | 0,9 | 0,4 | 0,04 | 0,11 | - | 11,5 |
Доломит - CaMg(CO3) 2 - минерал группы карбонатов, по химическому составу двойной карбонат кальция и магния: CaCO3·MgCO3 , содержит примеси глины, известняка. При температуре 600-700°C происходит диссоциация MgCO3, при 830-900°C происходит диссоциация CaCO3.
Череп представляет собой бой обожженных керамических изделий и состоит в основном из кварца и алюмосиликатов кальция и магния.
Присутствие отсева строительных отходов от разборки зданий, в данной композиции расширяет интервал спекания и увеличивает прочность образцов.
Пример конкретного выполнения
Дозируют и подвергают помолу в шаровой мельнице до остатка на сите 0,08 не более 1% кембрийскую и латненскую глины, формоотход - отход от сталелитейного производства на основе кварцевого песка, череп, доломит. Дозируют полученную тонкомолотую смесь в бетономешалку. Дозируют жидкое стекло плотностью 1,4-1,5 г/см3 и отсев строительных отходов от разборки зданий с Mкр =2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне. Приготавливают термоизоляционную массу, смешивая отдозированные компоненты в бетономешалке в течение 3-5 минут.
Жаростойкая термоизоляционная масса используется для изготовления изделий требуемой формы и образцов для проведения физико-механических испытаний методом литья или набивки.
Твердение термоизоляционной массы осуществляется в течение 24 часов в нормальных условиях. Затвердевшие образцы вынимают из форм и сушат при температуре 100-110°C. Высушенные образцы готовы к эксплуатации.
Для определения прочности образцы, отформованные вручную в формах размером 160×40×40 мм, сушили при температуре плюс 100°C до влажности 4-6% и обжигали при максимальной температуре плюс 1000°C с выдержкой не менее 1 часа. После обжига определялся предел прочности образцов при сжатии по ГОСТ 8462-85. Состав и свойства термоизоляционной массы представлены в таблице 2.
При получении термоизоляционной массы заявляемого состава используются побочные продукты строительной промышленности, что благоприятно сказывается на экологической обстановке, а также снижает себестоимость продукции.
Термоизоляционная масса, характеризуемая физико-механическими характеристиками, указанными в таблице 2, может быть использована для изготовления теплоизоляционных изделий, с температурой применения до плюс 1150°C.
Анализируя данные таблицы 2 можно сделать вывод, что термоизоляционная масса характеризуется повышением прочности на 20% по сравнению с прототипом, что расширяет диапазон применения массы и достигается попутный эффект утилизации отходов.
Класс C04B28/26 силикаты щелочных металлов
Класс C04B111/20 сопротивление химическому, физическому или биологическому воздействию