способ получения радионуклида торий-228
Классы МПК: | G21G1/08 сопровождаемого ядерным делением |
Автор(ы): | Чувилин Дмитрий Юрьевич (RU), Болдырев Петр Петрович (RU), Прошин Михаил Алексеевич (RU), Захаров Анатолий Сергеевич (RU), Николаев Виктор Иванович (RU), Загрядский Владимир Анатольевич (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU), Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU) |
Приоритеты: |
подача заявки:
2012-10-24 публикация патента:
20.11.2013 |
Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. В заявленном способе получения радионуклида 228Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория 230 Th, мишень размещают в линейный ускоритель электронов и облучают -квантами тормозного излучения, и в процессе пороговой ядерной реакции 230Th( ,2n)228Th накапливают в ней целевой радионуклид 228Th. В качестве материала мишени могут быть использованы соединения 230ThF4 или 230ThO 2 или металлический 230Th. Технический результат заключается в получении -излучающих нуклидов, позволяющем ликвидировать дефицит терапевтических -излучателей на рынке медицинских радионуклидов и обеспечить удовлетворение растущих потребностей в будущем. 1 з.п. ф-лы.
Формула изобретения
1. Способ получения радионуклида торий-228, включающий облучение мишени, отличающийся тем, что в качестве материала мишени берут природный изотоп тория - 230Th, мишень размещают в электронном ускорителе, облучают -квантами тормозного излучения ускорителя, где в процессе пороговой ядерной реакции 230Th( ,2n)228Th накапливают в мишени целевой радионуклид торий-228.
2. Способ по п.1, отличающийся тем, что в качестве материала мишени используют соединения 230ThF 4, или 230ThO2, или металлический 230Th.
Описание изобретения к патенту
Область техники
Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины.
При терапии онкологических заболеваний все более широкое применение находят -излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) -частиц в биологических тканях, а также высоким уровнем энерговыделения в области локализации распадающихся нуклидов. Носители -излучающих радионуклидов (монокланальные антитела, пептиды) с высокой специфичностью позволяют доставлять их точно в опухолевый узел или метастатический очаг. Благодаря малым пробегам -частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.
Настоящее изобретение может быть использовано для создания генераторов -излучателей торий-228/свинец-212 (228Th/ 212Pb) и свинец-212/висмут-212 (212Pb/212 Bi), конечный элемент цепочки распадов которых - радионуклид 212Bi, непосредственно используется в составе медицинского препарата. Таким образом, ключевое значение приобретает производство начального элемента цепочки - радионуклида 228Th.
Предшествующий уровень техники
Одним из наиболее перспективных направлений в ядерной медицине является точечная радиоиммунотерапия с использованием ·-излучателей. Применение короткоживущих -излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря короткому пробегу -частиц в ткани и высокой ионизирующей способности.
В настоящее время ведется интенсивный поиск -излучателей, обладающих приемлемыми ядерно-физическими свойствами. Радионуклид 212Bi, образующийся при
распаде 228Th, считается одним из наиболее перспективных для использования в терапии онкологических заболеваний.
Период полураспада 212 Bi 60,6 мин, средняя энергия -частиц 7,8 МэВ. При распаде 212Bi образуются радионуклиды 208Tl и 212Ро, которые ведут к стабильному нуклиду свинца 208Pb. Линейная передача энергии (ЛПЭ) составляет ~80 кэВ/мкм, а пробег -частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам клетки.
Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом, в виде меченных им моноклональных антител и других молекулярных носителей. Начальным элементом цепочки распада, приводящей к 212Bi, является радионуклид 228Th с периодом полураспада Т1/2 1,913 года. [В.А.Халкин и др., «Радионуклиды для радиотерапии» // Радиохимия, 1997, т.39, № 6, стр.481-490]. Для получения 212Bi возможно использование двух генераторных систем 228Th/ 224Ra и 224Ra/212Bi. В первом из них 224Ra отделяется от 228Th за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе из 224Ra выделяют 212 Bi с использованием катионообменных смол и минеральных кислот [В.М. Савинов, В.Б. Павлович, А.А. Котовский и др. «Контроль технологических процессов при разработке медицинских генераторов Ac-225-Bi-213 и Ra-224-Bi-212 альфа- и гамма-спектрометрическими методами» //Ядерная энергетика, № 3,2003, стр.116-126].
Поскольку 212 Bi является дочерним продуктом распада радионуклида 228 Th, то при производстве медицинского радионуклида 212 Bi определяющее значение приобретает процесс получения 228 Th, как исходного материала.
Известен способ получения радионуклида 228Th [В.М. Савинов, В.Б. Павлович, А.А. Котовский и др. «Контроль технологических процессов при разработке медицинских генераторов Ac-225-Bi-213 и Ra-224-Bi-212 альфа и гамма-спектрометрическими методами». Известия вузов. Ядерная энергетика. № 3, стр.119, 2003], заключающийся в радиохимическом выделении 228Th из «старых» запасов 233 U, в котором всегда присутствует примесь 232U, дочерним продуктом распада которого является 228Th. Однако рассчитывать на широкое вовлечение 233U (и, соответственно, 232U) в процесс производства 228Th не приходится в силу сложности получения этого изотопа урана.
В качестве прототипа выбран способ получения 228Th, заключающийся в накоплении 228Th в мишени из радия-226 (226Ra), облучаемой нейтронами в высокопоточном реакторе [В.Ю. Баранов, Н.С. Марченков, Нуклидная программа РНЦ «Курчатовский Институт»: прошлое, настоящее, будущее. Конверсия в машиностроении, 2000, № 3, стр.38-47]. В результате двукратного захвата нейтронов в мишени накапливается 228Th.
Существенными недостатками прототипа являются высокая радиотоксичность материала мишени, уникальность высокопоточного реактора, на эксплуатации которого основан способ получения 228Th из 226 Ra, а сам технологический процесс является многостадийным и осуществляется путем последовательного захвата двух нейтронов, в итоге выход конечного продукта невысок и не может удовлетворить растущий спрос на рынке терапевтических -излучателей.
Раскрытие изобретения
В основу изобретения положена задача создания технологичного способа получения -излучающих нуклидов, базирующегося на использовании дешевого доступного сырья, позволившего бы ликвидировать дефицит терапевтических -излучателей на рынке медицинских радионуклидов и обеспечить удовлетворение растущих потребностей в будущем.
Поставленная задача решена тем, что в способе получения радионуклида 228Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория - 230Th, мишень размещают в линейный ускоритель электронов и облучают -квантами тормозного излучения, и в процессе пороговой ядерной реакции 230Th( ,2n)228Th накапливают в ней целевой радионуклид 228Th.
В качестве материала мишени могут быть использованы соединения 230ThF4 или 230ThO2 или металлический 230 Th.
В предлагаемом способе производства 228 Th использовано существование природного радионуклида 230 Th - продукта естественного распада 238U. Известно, что при радиоактивном распаде 238U в цепочке дочерних продуктов, кроме изотопа 234U, образуются долгоживущие -излучатели: изотоп 230Th, а также изотоп 226Ra с периодами полураспада соответственно 8,1·10 4 и 1,59·103 лет. Содержание этих изотопов в природном уране оценивается следующими цифрами: тория 17,9 г/т урана и радия 352 мг/т урана. При переработке урановых руд, а-радиоактивные изотопы выделяют как побочные продукты [В.Б.Шевченко, Б.Н.Судариков, Технология урана, Госатомиздат, Москва, 1961 г.].
При обогащении гексафторида урана UF6 торий отделяется и остается в «огарках» при фторировании [Матвеев Л.В. и др.. Проблема накопления 232U и 236Pu в ядерном реакторе, «Атомная техника за рубежом», 1980, № 4, стр.10-17]. Однако основным источником 230 Th, доступным для использования в настоящее время, являются отходы отвального UF6 в разделительном производстве, где в процессе длительного хранения идет его накопление [Смирнов Ю.В. и др., Обработка, удаление и утилизация отходов горнометаллургического производства, «Атомная техника за рубежом», 1981, № 3, стр.15-20].
При облучении мишени, содержащей 230Th, в электронном ускорителе, по реакции 230 Th( ,2n)228Th в мишени накапливают целевой радионуклид 228Th.
Накопленный в мишени 228 Th имеет генетическую цепочку распада элементов, приводящую к радионуклиду 212Bi, который непосредственно используют в радиоиммунотерапии [В.А. Халкин и др., Радионуклиды для радиотерапии. Радиохимия, 1997, т.39, № 6, стр.483].
Предлагаемый способ получения 228Th обладает существенными достоинствами по сравнению с прототипом:
- целевой радионуклид 228 Th получают, используя в качестве исходного материала побочный продукт при переработке урановой руды - 230Th
- снижается радиотоксичность материала мишени;
- для получения целевого радионуклида 228Th используют достаточно распространенный и относительно простой ускоритель электронов с энергией 50 МэВ.
Пример осуществления изобретения
Мишень, содержащую радионуклид 230Th в виде металлического тория массой 10 г, размещают в электронном ускорителе с энергией электронов 50 МэВ. Торий герметизирован в корпусе мишени, выполненном из тугоплавкого металла тантал. В процессе облучения, продолжительностью 240 часов, в результате пороговой ядерной реакции 230Th( ,2n)228Th в мишени накапливают целевой радионуклид 228Th, являющийся начальным элементом цепочки распада радионуклидов, приводящей 212Bi, непосредственно используемого в радиоиммунотерапии.
После облучения мишень, содержащую 228Th, извлекают из ускорителя, выдерживают в течение месяца для снижения наведенной активности конструкционного материала корпуса мишени, затем из нее выделяют торий, растворяя его соляной кислотой, и используют для получения радионуклида 212Bi.
Предложенный способ получения 228Th позволяет, по сравнению со способом, выбранным за прототип, уменьшить трудоемкость процесса, снизить радиотоксичность материала мишени за счет использования в качестве исходного материала побочного продукта уранового производства - 230Th.
Класс G21G1/08 сопровождаемого ядерным делением