способ прокатки металлических полос
Классы МПК: | B21B1/34 горячей |
Автор(ы): | Вольшонок Игорь Зиновьевич (RU), Алдунин Анатолий Васильевич (RU), Кохан Лев Соломонович (RU), Трайно Александр Иванович (RU), Русаков Андрей Дмитриевич (RU) |
Патентообладатель(и): | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU) |
Приоритеты: |
подача заявки:
2012-04-19 публикация патента:
27.11.2013 |
Изобретение предназначено для снижения усилия прокатки на реверсивных станах горячей прокатки полос из сплавов черных и цветных металлов. Способ включает обжатие полосы в валках с приложением к полосе регламентированных переднего и заднего натяжений. Снижение усилия и момента прокатки, уменьшение прогиба и сплющивания валков обеспечивается за счет того, что прокатку ведут с относительным обжатием 8-28% при регламентированном соотношении коэффициентов переднего и заднего натяжений, зависящем от предела текучести материала до и после обжатия. 1 ил., 1 табл., 6 пр.
Формула изобретения
Способ горячей прокатки металлических полос на реверсивном одноклетьевом стане кварто 1700, включающий их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, отличающийся тем, что прокатку ведут с относительным обжатием 8-28% при соотношении коэффициентов переднего и заднего натяжений, равном
где
1 и 0 - удельные переднее и заднее натяжения полосы;
ТЗ и ТП - значения пределов текучести полосы до и после обжатия.
Описание изобретения к патенту
Изобретение относится к прокатному производству и может быть использовано на реверсивном одноклетьевом стане кварто 1700 при горячей прокатки полос из сплавов черных и цветных металлов.
Известен способ прокатки металлических полос, включающий их обжатие в валках с приложением к полосе регламентированных заднего и переднего натяжений, согласно которому величину удельного натяжения полосы в межклетевых промежутках определяют исходя из обжатия по предложенной математической зависимости [1].
Известен также способ прокатки металлических полос, включающий их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, по которому удельные натяжения по ширине полосы на входе и выходе клети в каждом продольном сечении устанавливают по предложенным математическим зависимостям [2].
Недостатки известных способов [1] и [2] состоят в том, что они не обеспечивают минимально возможного усилия прокатки, что увеличивает прогиб валков, разнотолщинность металлических полос и энергозатраты на прокатку.
Наиболее близким аналогом к предлагаемому изобретению является способ прокатки стальных полос на 5-клетьевом стане, включающий их обжатие в валках с приложением к полосе переднего и заднего натяжений, по которому натяжение полосы перед третьей клетью устанавливают в 1,01-1,56 раз больше натяжения после этой клети, натяжение полосы перед четвертой клетью - в 1,01-1,85 раз больше натяжения полосы после клети, а натяжение после второй клети - в 1,01-1,40 больше, чем перед этой клетью [3].
Недостаток известного способа состоит в том, что из-за большого усилия прокатки в каждой из клетей увеличивается прогиб валков и их сплющивание, что ведет к повышению разнотолщинности полос и увеличению энергозатрат на прокатку. Кроме того, известный способ не применим для одноклетевых реверсивных станов.
Техническая задача, решаемая изобретением, состоит в снижении усилия прокатки.
Для решения поставленной технической задачи в известном способе горячей прокатки металлических полос на реверсивном одноклетевом стане кварто 1700, включающем их обжатие в валках с приложением к полосе регламентированных переднего и заднего натяжений, согласно изобретению, прокатку ведут с относительным обжатием 8-28% при соотношении коэффициентов переднего и заднего натяжений, равном:
,
где , ;
1 и 0 - удельные переднее и заднее натяжения полосы;
ТЗ и ТП - значения пределов текучести полосы до и после обжатия.
Сущность изобретения поясняется изображенной на фигуре экспериментальной зависимостью относительного значения усилия прокатки P от соотношения коэффициентов 1 и 0 переднего и заднего натяжений для очага деформации с соотношением его длины ld к средней толщине полосы hср, равном: ld/hср=0,4-12,6 применительно к одноклетевому реверсивному стану кварто.
В процессе экспериментов на Стеккеля 1700 горячей прокатки осуществляли варьирование коэффициентов переднего 1 и заднего 0 натяжений путем изменения нагрузки электродвигателей моталки и разматывателя. Одновременно фиксировали изменение усилия прокатки P относительно его максимального значения.
Из приведенной экспериментальной зависимости следует, что переднее и заднее натяжения изменяют схему напряженно-деформированного состояния участка полосы в очаге деформации таким образом, что имеет место снижение усилия прокатки. Шаровая часть тензора напряжения уменьшается, а девиаторная, определяющая деформируемость металла, возрастает. Это приводит к снижению усилия и момента прокатки, уменьшению прогиба и сплющивания рабочих валков, сокращению суммарных энергозатрат на реализацию процесса.
Эксперименты показали (см. Фиг.), что в диапазоне имело место экстремальное снижение усилия прокатки P на 25-28%, что сопровождается уменьшением прогиба и сплющивания рабочих валков, снижением поперечной разнотолщинности прокатываемых полос при общем суммарном сокращении энергозатрат.
При относительных обжатиях менее 8% соотношение коэффициентов переднего и заднего натяжений не оказывает заметного влияния на усилие прокатки. Увеличение относительного обжатия более 28% само по себе существенно повышает усилие прокатки, что ведет к увеличению энергозатрат, разнотолщинности и неплоскостности полос.
При увеличении отношения более 1,4, как и при его уменьшении менее 1,2 снижается девиаторная часть тензора напряжений в очаге деформации, что приводит к увеличению усилия P прокатки.
Примеры реализации способа
Сляб из стали марки 60С2 нагревают до температуры t=1250°C и прокатывают в черновой группе клетей за 7 проходов в полосу сечением 10×1500 мм, которую сматывают в рулон на барабан моталки.
Полученную полосу при температуре t=1000°C в дальнейшем прокатывают на реверсивном одноклетьевом стане кварто 1700.
По справочным данным определяют значение предела текучести прокатываемой стали перед очагом деформации: ТЗ=85 кг/мм2. После обжатия в валках температура полосы снижается и ее предел текучести возрастет до величины ТП=90 кг/мм2.
Передний конец полосы пропускают через валки реверсивной клети и заправляют во вторую моталку. С помощью электродвигателей моталок устанавливают удельное заднее натяжение полосы 0=74 кг/мм2, а также удельное переднее натяжение 1=75 кг/мм2. При этом коэффициенты заднего и переднего натяжений равны:
; .
Отношение коэффициентов переднего и заднего натяжений составляет:
.
Затем осуществляют прокатку полосы в валках со скоростью 5 м/с с относительным обжатием =15% (до толщины 8,5 мм) и с приложением к полосе заранее установленных переднего и заднего натяжений.
Благодаря тому, что отношение коэффициентов переднего и заднего натяжений в процессе прокатки составляет , достигается изменение напряженного состояния металла в очаге деформации: девиаторная часть тензора напряжений возрастает, а шаровая уменьшается. За счет этого обеспечивается снижение усилия прокатки до минимального значения (см. Фиг.), составляющего при указанных условиях Р=1620 тс.
Снижение усилия прокатки в свою очередь обеспечивает сокращение энергозатрат на прокатку (суммарной потребляемой мощности N), уменьшает разнотолщинность Н и неплоскостность S прокатанных полос.
В таблице приведены варианты реализации предложенного способа и показатели их эффективности.
Из данных, представленных в таблице, следует, что при реализации предложенного способа (варианты № 2-4) достигается снижение усилия прокатки. Следствием этого является снижение энергозатрат, уменьшение разнотолщинности и неплоскостности полос.
В случаях запредельных значений соотношения коэффициентов переднего и заднего натяжений (варианты № 1 и № 5) усилие прокатки возрастает, увеличиваются энергозатраты на прокатку, разнотолщинность и неплоскостность полос. Более высокие усилие прокатки и энергозатраты необходимы в случае реализации ближайшего аналога [3] - вариант № 6.
Таблица. | |||||||
Параметры прокатки полосы из стали марки 60С2 на реверсивном стане кварто 1700 по схеме: 10×1500 мм 8,5×1500 мм | |||||||
№ п/п | , % | ld/hcp | P, тс | N, кВт | H, мм | S, мм/м | |
1. | 7 | 0,3 | 1,10 | 1790 | 847 | ±0,8 | 3,2 |
2. | 8 | 0,4 | 1,20 | 1630 | 790 | ±0,2 | 1,1 |
3. | 15 | 6,5 | 1,29 | 1620 | 780 | ±0,1 | 1,0 |
4. | 28 | 12,6 | 1,40 | 1635 | 785 | ±0,2 | 1,2 |
5. | 30 | 15,3 | 1,45 | 1795 | 850 | ±0,8 | 3,0 |
6. | 20 | 14,4 | не регл. | 1810 | 990 | ±0,9 | 3,5 |
Технико-экономические преимущества предложенного способа заключаются в том, что обжатие полосы в валках на 8-28% в очаге деформации с соотношением геометрических параметров длины очага деформации к средней в нем толщине полосы ld/hср=0,4-12,6, с приложением к полосе переднего и заднего натяжений, с соотношением коэффициентов переднего и заднего натяжений, равным , обеспечивает снижение усилия прокатки за счет целенаправленного воздействия на схему напряженно-деформированного металла в очаге деформации. Это способствует снижению суммарных энергозатрат на прокатку, повышению точности и плоскостности прокатываемых полос. Реализация предложенного способа обеспечивает повышение рентабельности производства металлических полос на 12-15%.
Литературные источники, использованные при составлении описания изобретения:
1. Патент РФ № 2239500, МПК B21B 1/28, 2004.
2. Патент РФ № 2217249, МПК B21B 1/28, 2003.
3. Патент РФ № 2287383, МПК B21B 1/28, B21B 37/48, 2006.