способ очистки воды

Классы МПК:C02F1/72 окислением
B01D61/00 Способы разделения, использующие полупроницаемые мембраны, например диализ, осмос, ультрафильтрация; устройства, вспомогательные принадлежности или операции, специально предназначенные для этих целей
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" (RU)
Приоритеты:
подача заявки:
2012-05-10
публикация патента:

Изобретение относится к способам очистки воды от растворенных органических веществ и может быть использовано для очистки природных и сточных вод. Способ включает каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии растворенных газов-окислителей. Причем обрабатываемый раствор перед мембранным реактором предварительно выдерживают в сатураторе под рабочим давлением трансмембранного фильтрования до полного газонасыщения раствора. В качестве катализаторов могут быть использованы каталитически активные мембраны, растворенные гомогенные катализаторы и/или дисперсии гетерогенных катализаторов. Результат заключается в упрощении и повышении надежности каталитического окисления в мембранных реакторах, например, при очистке загрязненных вод. 3 з.п. ф-лы, 1 ил., 2 табл., 5 пр.

способ очистки воды, патент № 2502682

Формула изобретения

1. Способ очистки воды, включающий каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии растворенных газов-окислителей, отличающийся тем, что обрабатываемый раствор перед мембранным реактором предварительно выдерживают в сатураторе под рабочим давлением трансмембранного фильтрования до полного газонасыщения раствора.

2. Способ по п.1, отличающийся тем, что в мембранный реактор подают растворенные гомогенные катализаторы.

3. Способ по п.1, отличающийся тем, что в мембранный реактор подают дисперсии гетерогенных катализаторов.

4. Способ по п.1, отличающийся тем, что в мембранный реактор подают смеси гомогенных и гетерогенных катализаторов.

Описание изобретения к патенту

Изобретение относится к способам очистки воды от растворенных органических веществ и может быть использовано для очистки природных и сточных вод.

Известен способ для очистки сточных вод (патент RU 2359919 от 27.06.2009), в котором имеется, по меньшей мере, один реакционный сосуд, по меньшей мере, с одним выпуском очищенных сточных вод, по меньшей мере, с одним вентиляционным каналом и со средством введения, по меньшей мере, одного окисляющего газа. Реакционный сосуд содержит слой материала, способного катализировать реакцию окисления органического материала в указанных сточных водах и/или поглощать этот органический материал. Реакционный сосуд также содержит погружную мембрану устройства фильтрации, при этом средство введения по меньшей мере одного окисляющего газа и впуск сточных вод расположены на дне реакционного сосуда для введения окисляющего газа и сточных вод параллельными потоками, в направлении слоя каталитического материала, и затем в направлении мембраны устройства фильтрации. Однако в данном способе при параллельном движении газа и обрабатываемых сточных вод не происходит полного смешения сточных вод и окисляющего газа, что приводит к недостаточной степени очистки воды.

Известен способ жидкофазного мембранного разделения (патент RU 2232044 от 03.02.2003), где происходит полное смешение обрабатываемой воды и газа при использовании мембранной сепарации. Техническое решение этого способа заключается в жидкофазном разделении путем предварительного насыщения под рабочим давлением фильтрования обрабатываемого раствора инертными, по отношению к разделяемым компонентам и к материалам мембранного аппарата, газами с последующей фильтрацией раствора через ультрафильтрационную мембрану. Однако в этом способе используются инертные к компонентам жидкости и материалу мембран газы, поэтому он не может быть использован для проведения окислительных каталитических процессов.

Наиболее близким к заявляемому техническому решению по технической сущности и достигаемому техническому результату является способ очистки воды от растворенных органических веществ, включающий приведение раствора в контакт с полупроводниковым фотокатализатором, облучение их ультрафиолетом в течение времени, достаточного для разрушения примесей, и отделение очищенной воды от фотокатализатора мембранной фильтрацией, отличающийся тем, что все три стадии осуществляются одновременно путем фильтрации через пористую мембрану из полупроводникового материала на основе TiO2, CdS, SrTiO3, Fe2O3, являющуюся фотокатализатором, при одновременном облучении мембраны ультрафиолетом в присутствии избытка окислительного агента (Патент РФ № 2117517 опубл. 20.08.1998 г.). Введение кислорода или озона осуществляется через газопроницаемую водонепроницаемую мембрану.

Однако данный способ является трудоемким, так как требует:

- наличия мощных источников ультрафиолетового облучения,

- сложных высоконапорных генераторов кислорода и/или озона,

- дополнительных водонепроницаемых мембран для подвода газа, что, в свою очередь, ведет к усложнению и удорожанию процесса очистки воды.

Кроме этого, данный способ

- имеет ограничения по максимальной исходной концентрации загрязняющих органических веществ в обрабатываемой воде,

- требует наличия избытка окислителей для предотвращения отравления катализатора мембран и/или снижения их каталитической активности.

Задачами изобретения являются:

- упрощение процесса каталитического окисления в мембранном реакторе;

- снятие ограничения по концентрациям загрязняющих веществ и по количеству окислителей в исходной реакционной смеси;

- повышение надежности очистки загрязненных вод.

Поставленные задачи решаются тем, что в способе очистки воды, включающем каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии окислителей в виде газов, согласно изобретению, обрабатываемый раствор полностью насыщают вводимыми газами - окислителями перед мембранным реактором под рабочим давлением трансмембранного фильтрования, причем в мембранный реактор подают, как растворенные гомогенные катализаторы или дисперсии гетерогенных катализаторов, так и их смеси.

Схема процесса представлена на фигуре. Способ осуществляется следующим образом.

Сырьевая емкость 1 заполняется очищаемой от загрязняемых примесей водой. Туда же может добавляться растворенный гомогенный или диспергированный гетерогенный катализатор. Затем жидкость из сырьевой емкости 1 по трубопроводу 2 эжектором 3 подается под рабочим давлением трансмембранного фильтрования в сатуратор 4. С помощью эжектора 3 в сатуратор 4 поступают окислители в виде газов, например, кислород или его смесь с озоном. Из сатуратора 4 после полного насыщения обрабатываемой жидкости окисляющим газом газонасыщенная реакционная смесь поступает в реактор с каталитически активными мембранами 5. При этом у поверхности мембраны со стороны сырья образуется слой с повышенной концентрацией реагирующих между собой и задерживаемых мембраной веществ (концентрационная поляризация), который, тем самым ускоряет их химическое взаимодействие. Продукты реакции отводятся из зоны реакции через мембрану, что также способствует увеличению скорости и степени химического взаимодействия. Слой с повышенной концентрацией задерживаемых мембраной веществ создает определенное гидравлическое сопротивление для трансмембранного потока. В нем происходит уменьшение гидростатического давления, вследствие чего из предварительно насыщенной газом жидкости начинают выделяться пузырьки растворенного газа, которые за счет тангенциального движения уменьшают вероятность загрязнения поверхности мембраны различными отложениями и промежуточными продуктами окисления, поддерживая тем самым ее каталитическую активность. Кроме того, окислитель, находящийся в газовой фазе в более высоких концентрациях, чем в жидкости, способствует лучшей активации катализатора на поверхности мембраны и препятствует его отравлению.

Катализаторы и непрореагировавшие вещества, находящиеся в обрабатываемой жидкости по линии ретентата 6, могут быть возвращены в сырьевую емкость для последующей повторной обработки в каталитическом мембранном реакторе.

Пример 1. Исследовалась очистка воды со следующим составом: ХПК (химическое потребление кислорода - бихроматная окисляемость) - 1930 мг/дм3, БПКп (полное биохимическое потребление кислорода) - 793 мг/дм3, взвешенные вещества - 3 мг/дм3, окислитель - озоно-кислородная смесь - 20 мгО3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами, минуя сатуратор. Давление в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось количество подаваемой через эжектор озоно-кислородной смеси и, тем самым, варьировались дозы подаваемого озона. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 1.

Таблица 1
Доза подаваемого озона, мг/дм3 ХПК после обработки, мг/дм3
11001220
1900859
2800430
2900442
3000435

Пример 2. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3 , взвешенные вещества - 3 мг/дм3, окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 3. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПК п - 793 мг/дм3, взвешенные вещества - 3 мг/дм 3. В воду добавлялся катализатор - раствор MnCl2 , окислитель - озоно-кислородная смесь - 20 мгO3/дм 3. Смесь воды и катализатора подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 4. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3 , взвешенные вещества - 3 мг/дм3. В воду добавлялся катализатор - дисперсия цеолита. Окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Смесь воды и катализатора подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 5. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПК п - 793 мг/дм3, взвешенные вещества - 3 мг/дм 3. В воду добавлялись катализаторы - дисперсия цеолита и раствор MnCl2. Окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Таблица 2
Условия проведения процесса обработки сточных вод ХПК сточных вод, мг/дм3, после сатуратора (числитель) и после реактора с каталитически активными мембранами (знаменатель) при степени насыщения газом-окислителем обрабатываемой жидкости, %
2040 6080 100
без добавления катализатора в исходную жидкость (пример 2)способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682
с добавлением в исходную жидкость гомогенного катализатора (пример 3) способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682
с добавлением в исходную жидкость гетерогенного катализатора (пример 4) способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682
с добавлением в исходную жидкость смеси гомогенного и гетерогенного способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682
катализаторов (пример 5) способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682 способ очистки воды, патент № 2502682

Предлагаемый способ очистки воды найдет свое применение при очистке природных и сточных вод.

Класс C02F1/72 окислением

способ обеззараживания воды -  патент 2524944 (10.08.2014)
установка безреагентной очистки и обеззараживания воды -  патент 2524601 (27.07.2014)
способ очистки природной воды -  патент 2514963 (10.05.2014)
способ разрушения аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в отходах производства -  патент 2500629 (10.12.2013)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
способ очистки сточных вод от фенолов -  патент 2476384 (27.02.2013)
способ получения гранулы покрытого окисляющего вещества, полученная гранула и ее применение -  патент 2471848 (10.01.2013)
способ каталитического окисления аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в водном растворе -  патент 2460693 (10.09.2012)
способ очистки цианидсодержащих вод -  патент 2450979 (20.05.2012)

Класс B01D61/00 Способы разделения, использующие полупроницаемые мембраны, например диализ, осмос, ультрафильтрация; устройства, вспомогательные принадлежности или операции, специально предназначенные для этих целей

электробаромембранный аппарат плоскокамерного типа -  патент 2528263 (10.09.2014)
модульный аппарат для гемофильтрации с интерактивной системой управления с возможностью ввода инструкций оператора -  патент 2526876 (27.08.2014)
способ фильтрации растворов и суспензий -  патент 2525936 (20.08.2014)
электробаромембранный аппарат рулонного типа -  патент 2522882 (20.07.2014)
устройство для фильтрации сточных вод с системой очистки обратноосмотических мембран -  патент 2522599 (20.07.2014)
электродиализатор с многослойной жидкой мембраной -  патент 2522333 (10.07.2014)
модульная проточная система -  патент 2520476 (27.06.2014)
способ и устройство рецикла для рецикла сбросной воды, содержащей суспензию, из процесса обработки полупроводников, в частности, из процесса химико-механической полировки -  патент 2520474 (27.06.2014)
способ обработки полимерных полупроницаемых мембран -  патент 2516645 (20.05.2014)
блочно-модульная установка для очистки и подачи воды -  патент 2516130 (20.05.2014)
Наверх