способ изготовления режущих пластин

Классы МПК:C23C14/24 вакуумное испарение
B23B27/14 резцы с режущими пластинками или наконечниками из специальных материалов 
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) (RU)
Приоритеты:
подача заявки:
2012-04-26
публикация патента:

Изобретение относится к области машиностроения, в частности к способу изготовления режущих пластин, и может найти применение при производстве металлорежущего инструмента. Осуществляют осаждение вакуумно-плазменным методом на твердосплавную пластину двухслойного покрытия. В качестве нижнего слоя наносят нитриды титана и алюминия, а верхнего слоя - нитриды ниобия и молибдена или ниобия и алюминия, легированные цирконием. Оба слоя наносят при температуре 600°С и давлении азота 4,3·10-4 Па. После нанесения верхнего слоя из камеры откачивают азот, впускают воздух и охлаждают камеру вместе с режущими пластинами. В результате повышается износостойкость режущих пластин. 1 пр., 1 табл.

Формула изобретения

Способ изготовления режущих пластин, включающий осаждение вакуумно-плазменным методом на твердосплавную основу двухслойного нитридного покрытия, отличающийся тем, что в качестве нижнего слоя наносят нитриды титана и алюминия, а в качестве верхнего слоя - легированные цирконием нитриды ниобия и молибдена или ниобия и алюминия, при этом оба слоя наносят при температуре 600°С и давлении азота 4,3·10-4 Па и после нанесения верхнего слоя из камеры откачивают азот, впускают воздух и охлаждают камеру вместе с режущими пластинами.

Описание изобретения к патенту

Изобретение относится к области машиностроения, в частности, к металлообработке, а именно к металлорежущему инструменту, который включает режущую пластину из спеченного твердого сплава с износостойким покрытием.

Известны режущие пластины с многослойными покрытиями из тугоплавких соединений (Верещака А.С. Работоспособность инструмента с износостойким покрытием. М: Машиностроение, 1993. - 336 с.), в частности двухслойное покрытие TiC+Ti(CN), т.е. из карбидов титана и карбонитридов титана осаждением из газовой фазы. Такое покрытие позволяет повысить работоспособность режущей пластины до 2способ изготовления режущих пластин, патент № 2502827 3 раз при обработке конструкционных сталей, чугунов. Покрытия наносят осаждением из газовой фазы толщиной 5способ изготовления режущих пластин, патент № 2502827 6 мкм. Считается, что недостатком такого метода осаждения износостойкого покрытия является образование между подложкой и нижним слоем покрытия из TiC хрупкой способ изготовления режущих пластин, патент № 2502827 -фазы, что способствует отслаиванию покрытия и снижению износостойкости режущих пластин.

В качестве прототипа принят способ получения многослойного покрытия для режущего инструмента (патент РФ № 2410466, С23С 14/24Б B23B 27/14, опубл. 27.01.2011). Способ включает вакуумно-плазменное нанесение двухслойного покрытия, в качестве нижнего слоя наносят нитрид титана и молибдена или нитрид титана и хрома, или нитрид титана и ниобия при температуре 600°C и при давлении азота в камере установки 7,5·10 -4 Па, а в качестве второго слоя - такой же нитрид, легированный цирконием при снижении температуры до 500°C и давления 4,3·10 -4 Па. Наносят нижний слой толщиной 40-50% от общей толщины покрытия, а общая толщина покрытия составляет 5-8 мкм.

Режущая пластина, изготовленная по такому способу и с таким покрытием, позволяет повысить износостойкость в 1,5способ изготовления режущих пластин, патент № 2502827 2 раза по сравнению с режущей пластиной с покрытием TiC-Ti(CN) при обработке как конструкционных, так и трудообрабатываемых материалов. Этот результат связан с тем, что верхний слой покрытия является многокомпонентным.

Однако недостатком такого вида режущей пластины является низкий прирост износостойкости. Это связано с тем, что, как показало наше исследование, нижний слой покрытия имеет низкую адгезию с твердосплавной подложкой и твердость, т.к. нитриды титана и молибдена, либо нитриды титана и хрома, либо нитриды титана и ниобия, вследствие высокой температуры плавления молибдена и ниобия, не обладают высокой растворимостью как с карбидами твердосплавной основы, так и с кобальтом. Кроме того, при таком давлении азота формируются нитриды нестехиометрического состава, т.е. с низкой твердостью. Это приводит к быстрому разрушению нижнего слоя после износа верхнего слоя покрытия. Таким образом, низкая адгезия границы раздела нижнего слоя покрытия с подложкой и его невысокая твердость снижают работоспособность покрытия в целом. Поскольку указанные элементы, например, молибден, ниобия являются тугоплавкими, то их не нужно использовать при осаждении нижнего слоя. Температуру осаждения верхнего слоя покрытия также не следует снижать, т.к. при этом в них формируется пористость.

Указанные недостатки известного способа, как при осаждении нижнего слоя, так и верхнего, снижают работоспособность режущей пластины в целом, особенно при резании нержавеющих и жаропрочных материалов.

Эти недостатки устраняются предлагаемым решением.

Решаемая задача - совершенствование режущих пластин с покрытием.

Технический результат - повышение износостойкости режущих пластин за счет изменения способа изготовления, в частности, как при осаждении состава нижнего слоя покрытия, так и при осаждении верхнего слоя покрытия.

Этот технический результат достигается тем, что в способе изготовления режущих пластин, включающем осаждение вакуумно-плазменным методом на твердосплавную основу двухслойного покрытия, в качестве нижнего слоя при температуре 600°C и давлении азота в камере установки 4,3·10-4 Па наносят нитриды, а в качестве верхнего слоя - нитриды, легированные цирконием, в качестве нижнего слоя наносят нитриды титана и алюминия, а в качестве верхнего слоя легированные цирконием нитриды ниобия и молибдена или ниобия и алюминия, оба слоя наносят при температуре 600°C и давлении азота 4,3·10-4 Па. После нанесения верхнего слоя из камеры откачивают азот, впускают воздух и охлаждают камеру вместе с режущими пластинами.

Используемые при осаждении нижнего слоя легированные цирконием нитриды титана и алюминия менее тугоплавки, чем используемые в прототипе, повышают адгезию их с твердосплавной подложкой и в целом работоспособность покрытия. Одинаковая температура и давление азота при осаждении обоих слоев исключает формирование нитридов нестехиометрического состава, которые снижают твердость.

В предлагаемом способе после осаждения верхних слоев, в отличие от известного, азот откачивали, впускали воздух и охлаждали камеру установки вместе с режущими пластинами. В результате, как показали микро-рентгено-спектральные исследования, в верхних слоях покрытия формируются еще и оксинитриды, а пористость отсутствует, что также способствовует повышению износостойкости режущих пластин.

Пример осуществления способа.

Изготавливали режущие пластины, где на основу (подложку) из твердого сплава ТТ10К8Б методом КИБ осаждали двухслойные покрытия по 3 мкм каждого слоя. Перед напылением пластины подвергали ультразвуковой обработке и промывке ацетоном и спиртом. Затем пластины помещали в вакуумную камеру установки Булат-6, снабженной тремя испарителями. Камеру откачивали до давления 6,65·10-3 Па, включали поворотное устройство и подавали на него отрицательное напряжение 1,1 кВ. Затем включали один из испарителей и при токе дуги 100 А проводили ионную очистку и нагрев пластин до температур 600±30°C. Включали два испарителя, содержащие два катода: из титана и алюминия и подавали реакционный газ-азот, осаждая слоя нитрида (AlTi)N при давлении 4,3×l04 Па толщиной 3 мкм в течении 18 мин при температуре 600°С. Нижний слой формировали из нитридов титана и алюминия, а верхний слой осаждали из нитридов ниобия и молибдена или ниобия и алюминия, но их получали трехкомпонентными, т.к. они содержали и цирконий, причем осаждение верхнего слоя проводили при том же давлении азота, т.е. при 4,3×10-4 Па при температуре 600°С. После осаждения верхнего слоя из камеры откачивали азот и впускали воздух, охлаждая камеру установки вместе с режущими пластинами до полного остывания.

Осаждали также такие же двухслойные покрытия по известному способу, где давление азота при осаждении нижних и верхних слоев составляло 7,5·10 -4 Па при температуре 600°С±30.

Результаты испытаний пластин приведены в таблице.

Осуществляли точение жаропрочной стали Х18Н9Т. Режим резания: скорость резания V=50 м/мин, глубина резания t=2 мм, подача - S=0,21 мм/об. Определяли Т-время резания при достижении износа режущей пластины по задней поверхности h3=0,4 мм. Испытаниям подвергали предлагаемые четырехгранные режущие пластины и режущие пластины по прототипу. Результаты испытания покрытий приведены в таблице.

Осуществляли также осаждение и испытания других видов покрытия по известному способу (патент № 2410466), т.е. где нижние слои содержали нитриды титана и хрома, либо нитриды титана и молибдена, а верхние слои те же нитриды, что и в нижних слоях, но и легированные еще цирконием. Но их работоспособность оказывалась ниже, чем покрытия по предлагаемому способу.

По результатам испытаний режущих пластин, приведенных в таблице, видно, что режущая пластина, изготовленная по предлагаемому способу, обеспечивает повышение износостойкости до 2 раз. Преимущество предлагаемого способа изготовления режущей пластины: обеспечивается как высокая адгезия нижнего слоя покрытия с основой, так и его твердость. В результате оно становится более износостойким и оказывает сопротивляемость разрушению после износа верхнего слоя покрытия.

Таблица
Вид пластинПредлагаемый способ изготовления режущей пластины (ТТ10К8Б)(TiAl)N+(NbMoZi)N Прототип (ТТ10К8Б) (TiMo)N+(NbMoZi)N
Время резания до износа16 8
h3=0,4 мм в мин

Время резания до износа
14 8
h3=0,4 мм в мин (TiAl)N+(NbAlZi)Nспособ изготовления режущих пластин, патент № 2502827

Класс C23C14/24 вакуумное испарение

способ нанесения аморфного алмазоподобного покрытия на лезвия хирургических скальпелей -  патент 2527113 (27.08.2014)
испаритель для органических материалов -  патент 2524521 (27.07.2014)
скользящий элемент, в частности поршневое кольцо, имеющий покрытие, и способ получения скользящего элемента -  патент 2520245 (20.06.2014)
промышленный генератор пара для нанесения покрытия из сплава на металлическую полосу (ii) -  патент 2515875 (20.05.2014)
испаритель для вакуумного нанесения тонких пленок металлов и полупроводников -  патент 2507304 (20.02.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503743 (10.01.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503742 (10.01.2014)
способ сборки шатунно-поршневого узла -  патент 2499900 (27.11.2013)
способ получения металлсодержащего углеродного наноматериала -  патент 2499850 (27.11.2013)

Класс B23B27/14 резцы с режущими пластинками или наконечниками из специальных материалов 

режущая пластина -  патент 2528288 (10.09.2014)
двухслойное износостойкое покрытие режущего инструмента -  патент 2527829 (10.09.2014)
покрытие на режущем инструменте, выполненное в виде режущего кромочного элемента, и режущий инструмент, содержащий такое покрытие -  патент 2518856 (10.06.2014)
композиционный материал на основе карбида бора -  патент 2515663 (20.05.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503743 (10.01.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2495961 (20.10.2013)
способ получения многослойного покрытия для режущего инструмента -  патент 2495960 (20.10.2013)
способ получения многослойного покрытия для режущего инструмента -  патент 2495959 (20.10.2013)
способ получения многослойного покрытия для режущего инструмента -  патент 2495958 (20.10.2013)
Наверх