способ получения поверхностно-активных фторсодержащих -кетосульфокислот
Классы МПК: | C07C303/08 реакцией с галогенсульфокислотами C07C309/07 содержащие атомы кислорода, связанные с углеродным скелетом C07C309/06 содержащие атом галогена или нитро- или нитрозогруппы, связанные с углеродным скелетом |
Автор(ы): | Черноиванов Вячеслав Иванович (RU), Хохлов Сергей Сергеевич (RU), Елеев Александр Федорович (RU), Герасимов Константин Николаевич (RU), Фролова Светлана Александровна (RU), Дунаев Анатолий Васильевич (RU) |
Патентообладатель(и): | Государственное научное учреждение Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка Российской академии сельскохозяйственных наук (ГНУ ГОСНИТИ Россельхозакадемии) (RU) |
Приоритеты: |
подача заявки:
2012-10-24 публикация патента:
10.01.2014 |
Изобретение относится к способу получения фторсодержащих поверхностно-активных веществ общей формулы RfC(=O)CH 2SO2OH, где Rf принимает значения: CF3O(CF2CF2O)mCF 2 при m = 1-3; или C3F7O[CF(CF 3)CF2O]nCF(CF3) при n = 0, 1, 2, путем обработки метилперфторалкилкетона формулы R fC(O)CH3 хлорсульфоновой кислотой ClSO2 OH по схеме
-кетосульфокислот, патент № 2503658" SRC="/images/patents/501/2503658/2503658-2-s.gif" BORDER="0"> с последующим удалением хлористого водорода из продуктов реакции. Процесс ведут при температуре 80-90°С с последующей отгонкой хлористого водорода в вакууме 20-30 мм рт. ст. Технический результат: разработан новый способ получения фторсодержащих поверхностно-активных веществ, который позволяет увеличить выход целевого продукта и упрощает технологический процесс получения. 2 з.п. ф-лы, 6 пр.
Формула изобретения
1. Способ получения поверхностно-активных фторсодержащих -кетосульфокислот, патент № 2503658" SRC="/images/patents/501/2503658/946.gif" BORDER="0" ALIGN="absmiddle"> -кетосульфокислот общей формулы RfC(=O)CH 2SO2OH,
где Rf принимает значения: CF3O(CF2CF2O) mCF2 при m = 1-3; или C3F7 O[CF(CF3)CF2O]nCF(CF3 ) при n = 0, 1, 2,
путем обработки метилперфторалкилкетона формулы RfC(O)CH3 реагентом, содержащим серу, отличающийся тем, что в качестве реагента используют хлорсульфоновую кислоту ClSO2OH и процесс обработки ведут по схеме:
-кетосульфокислот, патент № 2503658" SRC="/images/patents/501/2503658/2503658-3-s.gif" BORDER="0">
а затем из продуктов реакции удаляют хлористый водород.
2. Способ по п.1, отличающийся тем, что реакцию ведут при эквимольных количествах метилперфторалкилкетона и хлорсульфоновой кислоты.
3. Способ по п.1 или 2, отличающийся тем, что процесс ведут при температуре 80-90°С с последующей отгонкой хлористого водорода в вакууме 20-30 мм рт. ст.
Описание изобретения к патенту
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к получению фторсодержащих поверхностно-активных сульфокислот общей формулы
RtC(=O)CH2SO 2OH,
где Rf принимает значения: CF3O(CF2CF2O)mCF 2 при m=1-3;
C3F7O[CF(CF 3)CF2O]nCF (CF3) при n=0, 1, 2.
УРОВЕНЬ ТЕХНИКИ
Фторсодержащие -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> -кетосульфокислоты, а также соли на их основе, указанного выше строения находят и могут найти применение в качестве поверхностно-активных веществ (ПАВ) широкого назначения в процессах, связанных с изменением поверхностного натяжения на границах раздела фаз в гомогенных и гетерогенных системах: «жидкость-жидкость», «жидкость-газ» и «жидкость-твердое тело». Примерами таких процессов являются эмульгирование и дезэмульгирование, пенообразование, сорбционные процессы (адсорбция и абсорбция), смачивание и т.п., что особенно востребовано с учетом сверхвысокой хемостойкости и олеофобности фторсодержащих ПАВ в создании высокоэффективных средств пожаротушения, присадок к маслам, компонентов электролитов хромирования, никелирования, кобальтирования и т.п., гидро- и олеофобизаторов поверхности материалов различной природы. В частности, 1,1-дигидроперфтор-4,7-диокса-3,6-диметилдеканон-2-сульфо-кислота была запатентована как компонент электролита хромирования [1], а ее индиевая соль запатентована в качестве противоизносной присадки к горюче-смазочным материалам [2].
Известный способ получения поверхностно-активных фторсодержащих -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> -кетосульфокислот [1] заключается во взаимодействии метилперфторалкил-кетонов с серным ангидридом при температурах в интервале от 30 до 50°С по следующей схеме:
-кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" TI="CF" HE="18" WI="76">
где Rf принимает значения: CF 3O(CF2CF2O)mCF2 при m=1-3;
C3F7O [CF(CF 3)CF2O]nCF (CF3) при n=0, 1, 2.
В рассматриваемом способе целевые сульфокислоты выделяют перегонкой в вакууме. Выход целевых соединений составляет 70-80% в пересчете на исходный метилперфторалкилкетон. Указанный способ включает использование свободного серного ангидрида, физико-химические свойства которого существенно осложняют технологию получения целевых веществ. Прежде всего это относится к неконтролируемой способности серного ангидрида к самопроизвольной полимеризации, особенно при температурах, близких к точке замерзания (13,6°С), в виде тонких бесцветных нитей. Полимерная форма серного ангидрида термически устойчива, а при температуре выше температуры кипения (44°С) постепенно деполимеризуется с образованием паров серного ангидрида, минуя стадию образования жидкой фазы.
Относительно низкая температура кипения (44°С) обусловливает высокую летучесть серного ангидрида, а сравнительно высокая температура замерзания определяют небольшую температурную разницу между замерзанием (кристаллизацией) и кипением и, тем самым, на практике легко создают условия для «забивки» линии подачи серного ангидрида в условиях работы производственной установки. Все эти факторы не позволяют осуществлять достаточно точную дозировку серного ангидрида и, как следствие этого, требуют выделения целевых сульфокислот в чистом виде перегонкой в высоком вакууме (не выше 1 мм рт. ст.).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В заявляемом способе в качестве сульфирующего реагента вместо серного ангидрида используется хлорсульфоновая кислота. Процесс получения целевой сульфокислоты заключается в смешении эквимольных количеств метилперфторалкилкетона и хлорсульфоновой кислоты с последующим удалением хлористого водорода при нагревании реакционной массы до 80-90°С в вакууме 20-30 мм рт. ст. Реакция осуществляется по схеме:
-кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0">
где Rf принимает значения: CF3O(CF2CF2O)mCF 2 при m=1-3;
C3F7O[CF(CF 3)CF2O]nCF (CF3) при n=0, 1, 2.
Применение хлорсульфоновой кислоты позволяет получать целевые сульфокислоты практически с количественным выходом и не требует перегонки сульфокислот в высоком вакууме.
ПРИМЕРЫ ОСУЩЕСТВЛЕНИЯ
Ниже приведены примеры конкретного исполнения.
Пример 1. Получение 1,1-дигидроперфтор-4,7-диоксаоктанон-2-сульфокислоты (m=1 в общей формуле сульфокислот). При перемешивании к 29,40 г (0,1 моль) метилперфтор-2,5-диоксагексилкетона при 20-30°С прибавляют по каплям 11,70 г (0,1 моль) хлорсульфоновой кислоты. Далее смесь нагревают в течение часа до 80-90°С и выдерживают в течение часа в вакууме 20-30 мм рт. ст. По окончании процесса получают 37,41 г (~100%) целевой сульфокислоты, nD -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 1,3565; d4 -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 1,845. Найдено, % С 19,81; Н 1,02; F 45,11. C6H3F9O6S. Вычислено, %: С 19,26; Н 0,81; F 45,70. Спектр ЯМР 1Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,55 с (СН2); 13,45 с (ОН).
Пример 2. Получение 1,1-дигидроперфтор-4,7,10-триоксаундеканон-2-сульфокислоты (m=2 в общей формуле сульфокислот). Аналогично способу получения сульфокислоты, описанному в примере 1, из 41,0 г (0,1 моль) метилперфтор-2,5,8-триоксанонилкетона и 11,70 г (0,1 моль) хлорсульфоновой кислоты получают 49,0 г (~100%) целевой сульфокислоты. Найдено, % С 19,30; Н 0,80; F 49,55. C8H3F13O7S. Вычислено, %: С 19,59; Н 0,61; F 50,41. Спектр ЯМР 1 Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,51 с (СН2); 12,95 с (ОН).
Пример 3. Получение 1,1-дигидроперфтор-4,7,10,13-тетраокса-тетрадеканон-2-сульфокислоты (m=3 в общей формуле сульфокислот). Аналогично способу получения сульфокислоты, описанному в примере 1, из 26,3 г (0,05 моль) метилперфтор-2,5,8,11-тетраоксадодецилкетона и 5,83 г (0,05 моль) хлорсульфоновой кислоты получают 30,30 г (~100%) целевой сульфокислоты. Найдено, % С 19,61; Н 0,66; F 53,01. C10H3 F17O8S. Вычислено, %: С 19,82; Н 0,50; F 53,29. Спектр ЯМР 1Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,52 с (СН2); 12,89 с (ОН).
Пример 4. Получение 1,1-дигидроперфтор-4-окса-3-метилгептанон-2-сульфокислоты (n=0 в общей формуле сульфокислот). Аналогично способу получения сульфокислоты, описанному в примере 1, из 32,8 г (0,1 моль) метилперфтор-2-окса-4-метилпентилкетона и 11,70 г (0,1 моль) хлорсульфоновой кислоты получают 40,80 г (~100%) целевой сульфокислоты, nD -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 1,3511; d4 -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 1,846. Найдено, % С 20,39; Н 0,88; F 51,10; S 7,45. C7H3F11O5 S. Вычислено, %: С 20,59; Н 0,74; F 51,20; S 7,86. Спектр ЯМР 1Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,70 м (СН2); 11,60 с (ОН).
Пример 5. Получение 1,1-дигидроперфтор-4,7-диокса-3,6-диметилдеканон-2-сульфокислоты (n=1 в общей формуле сульфокислот). Аналогично способу получения сульфокислоты, описанному в примере 1, из 49,4 г (0,1 моль) метилперфтор-2,5-диокса-1,4-диметилоктилкетона и 11,70 г (0,1 моль) хлорсульфоновой кислоты получают 57,40 г (~100%) целевой сульфокислоты, d4 -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 1,856. Найдено, % С 20,83; Н 0,47; F 53,01. C10H3F17O6S. Вычислено, %: С 20,92; Н 0,53; F 53,25. Спектр ЯМР 1Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,51 с (CH2); 11,42 с (ОН).
Пример 6. Получение 1,1-дигидроперфтор-4,7,10-триокса-3,6,9-триметилтридеканон-2-сульфокислоты (n=2 в общей формуле сульфокислот). Аналогично способу получения сульфокислоты, описанному в примере 1, из 33,0 г (0,05 моль) метилперфтор-2,5-диокса-1,4-диметилоктилкетона и 5,83 г (0,05 моль) хлорсульфоновой кислоты получают 37,0 г (~100%) целевой сульфокислоты. Найдено, % С 20,95; Н 0,55; F 58,92. C13 H3F23O7S. Вычислено, %: С 21,10; Н 0,41; F 59,04. Спектр ЯМР 1Н, -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> (относительно ТМС), м.д.: 4,50 с (СН2); 11,39 с (ОН).
Предложенный способ характеризуется высоким выходом целевых соединений и существенным упрощением процесса, который исключает необходимость выделения целевых соединений перегонкой при высоких температурах в глубоком вакууме.
Источники информации
1. М.И., А.Ф.Елеев, А.Ф.Ермолов, М.А.Курыкин, В.А.Петрунин, B.C.Поляков, Фторсодержащие -кетосульфокислот, патент № 2503658" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> -кетосульфокислоты или их соли в качестве ПАВ для процессов, протекающих в водных средах, и способ их получения. Патент РФ, № 2005718CI, С07С 303/06, 1992 г.
2. А.Ф.Елеев, И.Ю.Ермакова, Ю.П.Здоров, А.В.Карасев, B.C.Поляков, С.А.Фролова, С.С.Хохлов, Противоизносная присадка к смазочным средам и топливу, Патент РФ № 2206605, 2002 г.
Класс C07C303/08 реакцией с галогенсульфокислотами
Класс C07C309/07 содержащие атомы кислорода, связанные с углеродным скелетом
Класс C07C309/06 содержащие атом галогена или нитро- или нитрозогруппы, связанные с углеродным скелетом