смазка для лубрикации зоны контакта колес и рельсов

Классы МПК:C10M113/16 неорганический материал, обработанный органическими соединениями, например с покрытием
Автор(ы):, ,
Патентообладатель(и):Общество с ограниченной ответственностью Научно-технический центр "Вамива" (RU)
Приоритеты:
подача заявки:
2011-10-31
публикация патента:

Настоящее изобретение относится к смазке для лубрикации зоны контакта колес и рельсов, содержащей пластичную основу и модифицированный порошкообразный наполнитель, отличающейся тем, что в качестве пластичной основы используют углеводородное масло, а модифицированный порошкообразный наполнитель содержит смесь наноразмерных алюмосиликатных частиц, обработанных поверхностно-активными веществами, при следующем соотношении компонентов, мас.%:

модифицированный порошкообразный наполнитель 5-10
поверхностно активное вещество 3-8
углеводородное масло остальное

Техническим результатом настоящего изобретения является повышение усталостной прочности и износостойкости тяжелонагруженных узлов трения. 2 табл.

Формула изобретения

Смазка для лубрикации зоны контакта колес и рельсов, содержащая пластичную основу и модифицированный порошкообразный наполнитель, отличающаяся тем, что в качестве пластичной основы используют углеводородное масло, а модифицированный порошкообразный наполнитель содержит смесь наноразмерных алюмосиликатных частиц, обработанных поверхностно-активными веществами при следующем соотношении компонентов, мас.%:

модифицированный порошкообразный наполнитель 5-10
поверхностно - активное вещество3-8
углеводородное маслоостальное

Описание изобретения к патенту

Изобретение относится к смазочным материалам, в частности, к смесям основ и добавок, и может быть использовано для лубрикации зоны контакта колес и рельсов и повышения усталостной прочности и износостойкости тяжело нагруженных узлов трения.

Известна смазка для лубрикации рельсов, состоящая из полужидкой смазки Трансол-200, жидкого стекла и графита (патент РФ № 2067110 по кл. C10M 169/04 от 27.09.1996 г.)

Недостатком при использовании данной смазки для лубрикации зоны контакта колес и рельсов является недостаточная ее эффективность, обусловленная относительно низкой сохранностью смазочных свойств, недостаточной усталостной прочностью и потерей необходимых трибологических свойств смазки в жестких условиях работы.

Известна смазочная композиция для тяжело нагруженных узлов трения, (патент РФ № 2258080 по кл. C01M 125/04), содержащая мыльную пластичную смазку и порошкообразный наполнитель, включающий смесь наноразмерных порошков железа, никеля и цинка дисперсностью 10-30 нм при следующем соотношении компонентов (мас.%):

порошок железа - 30-70

порошок никеля - 20-40

порошок цинка - 10-30

наполнитель - 0,5-1,5

пластичная смазка - 98,5-99,5

Наличие наноразмерных порошков в данной композиции позволяет повысить износостойкость композиции и предел контактной прочности. Однако использование данной композиции не обеспечивает требуемой устойчивости смазочных слоев, эффективно разделяющих поверхности трения. Причина этого заключается в том, что диспергированные в мыльной среде нанопорошки после отстоя смазки выпадают в осадок, вызывая ухудшение свойств смазочного слоя.

Задача, на решение которой направлено заявленное изобретение, заключается в повышении эффективности лубрикации зоны контакта колес и рельсов.

Поставленная задача решается за счет того, что в смазке для лубрикации зоны контакта колес и рельсов, содержащей пластичную основу и модифицированный порошкообразный наполнитель, в качестве пластичной основы используют углеводородное масло, а порошкообразный модифицированный наполнитель содержит смесь наноразмерных частиц, обработанных поверхностно-активными веществами при следующем соотношении компонентов, (мас.%):

модифицированный порошкообразный наполнитель - 5-10
поверхностно активное вещество- 3-8
углеводородное масло- остальное

Технология изготовления смазки включает волновую технологию диспергирования минерального нанонаполнителя в масляной фазе в присутствии концентрата поверхностно-активного вещества с одновременной модификацией частиц наполнителя в процессе смешения с последующим разбавлением концентрата нефтяным маслом.

В качестве наноразмерных частиц используются агрегаты алюмосиликатного порошка, например природные или синтетические смектитовые глины, а в качестве поверхностно-активных веществ используются модификаторы анионного и катионного типа, например, соли жирных карбоновых кислот, четвертичные аммониевые соединения и пр.

Использование модифицированного наполнителя, содержащего смесь наноразмерных алюмосиликатных частиц, модифицированных поверхностно-активными веществами, приводит к образованию устойчивых дисперсий, содержащих наноразмерные частицы в углеводородном масле, причем действие силы тяжести, приводящие к седиментации модифицированных наночастиц, полностью компенсируется силами гидродинамического сопротивления среды, действующими на частицу.

Для оценки эффективности предлагаемой смазки проводились триботехнические испытания по модельной схеме «роликовая аналогия» с проскальзыванием 20% на машине для испытания материалов на трение и износ ИИ 5018. В качестве образцов для испытаний использовались ролики из материла сталь 45 диаметром 50 мм и шириной 10 мм. Микротвердость и механические характеристики поверхностного слоя определялись по диаграмме вдавливания алмазной пирамиды Виккерса на кинетическом микротвердомере CSM. Износ определялся весовым методом на лабораторных весах ВЛР-200 с точностью измерения - 0,5 мг.

Продолжительность испытаний определялась временем, достаточным для определения износа образцов (t=20÷25 мин.). Режим испытаний соответствовал испытанию смазок для колес и рельсов в зоне контакта. Методика испытаний состояла в нанесении смазки на один нижний ролик и обкатки его несмазанным роликом в течении 20 минут под нагрузкой 2000 Н при числе оборотов 382 об/мин, что соответствует линейной скорости 1 м/с и измерении потери веса за время эксперимента.

B таблице 1 представлены результаты испытаний на износ образцов при граничной смазке, а в таблице 2 представлены результаты испытаний на кинетическую микротвердость образцов после трения при граничной смазке.

Таблица 1.
№ образцаG1 (гр.) G1 (гр.) Gc (гр.)t (мин.) Среднее Gc (гр.)
1 0,003300,00820 0,0115020 0,00595
2 0,000650,00370 0,0043520
30,000850,00115 0,0020020
Где: G1 - износ нижнего образца; G2 - износ верхнего образца;
Gc - износ пары образцов; t - время испытания.

Таблица 2.
№ образцаСостояние поверхности образца HV, (кг/мм2) Wпл, (мк/Дж)
1 Исходное состояние до трения 3391,08
2Трение со смазкой 3391,09
Где: HV, (кг/мм2) - микротвердость по Виккерсу;
Wпл, (мк/Дж) - коэффициент необратимой потери энергии, оцениваемой площадью петли гистерезиса на диаграмме вдавливания при разгружении индентора

Полученный смазочный материал дает возможность при его использовании существенно повысить эффективность лубрикации зоны контакта колес и рельсов по критериям износостойкости и минимального трения поверхностей трения.

Кроме того использование алюмосиликатного порошка снижает стоимость затрат за счет его относительно низкой стоимости.

Класс C10M113/16 неорганический материал, обработанный органическими соединениями, например с покрытием

защитный смазочный материал -  патент 2495095 (10.10.2013)
пластичная смазка -  патент 2412981 (27.02.2011)
защитный смазочный материал -  патент 2323961 (10.05.2008)
пластичная смазка -  патент 2288254 (27.11.2006)
Наверх