способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов
Классы МПК: | G21C21/02 изготовление топливных или воспроизводящих элементов в неактивных оболочках C01G43/025 диоксид урана |
Автор(ы): | Гречишников Сергей Игоревич (RU), Петрунин Вадим Фёдорович (RU), Попов Виктор Владимирович (RU) |
Патентообладатель(и): | федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) (RU) |
Приоритеты: |
подача заявки:
2012-07-17 публикация патента:
10.01.2014 |
Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов. Для прессования таблеток используют смесь порошка диоксида урана, приготовленного по одной из известных технологий, с удельной поверхностью частиц 2,0-2,2 м2 /г, ультрадисперсного порошка UO2 с удельной поверхностью 10,5-11 м2/г и нанокристаллических порошков оксидов Gd2O3, ТiO2, Nb2O 5, Аl2О3, Сr2О3 . Содержание ультрадисперсного порошка UO2 в смеси - 5-10 % масс., нанокристаллических оксидных порошков Gd 2O3 - 3-5 % масс., других оксидов - 0,02-0,1 % масс. Такое топливо существенно превосходит стандартное по показателю среднего размера зерна (25-60 мкм вместо 10-20 мкм). Технический результат - увеличение глубины выгорания топлива при его эксплуатации за счет увеличения зерна топливных таблеток, улучшение его технологических и эксплуатационных свойств за счет увеличения пластичности и, как следствие, повышение надежности работы тепловыделяющих элементов. 4 з.п. ф-лы, 2 табл.
Формула изобретения
1. Способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов, включающий прессование и спекание из порошка диоксида урана, отличающийся тем, что до прессования к стандартному порошку UO2 с удельной поверхностью частиц 2,0-2,2 м2/г добавляют ультрадисперсный порошок UO2 с удельной поверхностью 10,5-11,0 м 2/г в количестве 5-10 мас.%, и нанокристаллический порошок оксида Gd2O3 от 3 до 5 мас.%, затем в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксидов 3-, 4- и 5-зарядных металлов или совокупность оксидов 3-, 4- и 5-зарядных металлов.
2. Способ по п.1, отличающийся тем, что в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксидов 3-зарядных металлов, в качестве которых используют Al2O3 от 0,012 до 0,015 мас.%, и Cr 2O3 от 0,006 до 0,015 мас.%.
3. Способ по п.1, отличающийся тем, что в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксида 4-зарядного металла, в качестве которого используют ТiO2 от 0,012 до 0,015 мас.%.
4. Способ по п.1, отличающийся тем, что в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксида 5-зарядного металла, в качестве которого используют Nb 2O5 от 0,006 до 0,015 мас.%.
5. Способ по п.1, отличающийся тем, что в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют совокупность нанокристаллических порошков оксидов 3-, 4- и 5-зарядных металлов, в качестве которых используют Al2O3 от 0,012 до 0,015 мас.%, Cr2O3 от 0,006 до 0,015 мас.%, TiO 2 от 0,012 до 0,015 мас.%, и Nb2O5 от 0,006 до 0,015 мас.%.
Описание изобретения к патенту
Способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов
Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы.
К ядерному топливу современных атомных реакторов предъявляют высокие требования, в частности по повышению эффективности топливоиспользования, что может быть достигнуто за счет увеличения глубины его выгорания при эксплуатации.
С повышением глубины выгорания топлива в периферийной области таблетки начинает образовываться специфическая микроструктура с образованием субзерен (уменьшается эффективный размер зерна) и образованием укрупненных газовых пузырьков по границам зерен (так называемая «rim»-структура), что приводит к повышенному выходу газообразных продуктов деления (ГПД) даже в условиях снижения линейной нагрузки, тем самым ухудшается работоспособность тепловыделяющих элементов.
Возможным путем решения этой проблемы является использование топлива с увеличенным размером зерна.
При производстве топливных таблеток для ядерных реакторов используются такие операции как подготовка пресс-порошка диоксида урана, прессование таблеток, их спекание и шлифование.
В настоящее время существует несколько способов получения топливных таблеток, описанных в монографии [1]. Среди них известен способ получения топливных таблеток, в котором порошок диоксида урана получают через аммонийуранилтрикарбонат (АУК-процесс). К недостаткам этого способа следует отнести низкую плотность прессованных таблеток, близкую к нижнему пределу - около 10.4 г/см3, а также высокую температуру спекания полученных таблеток.
Кроме того, известен способ получения топливных таблеток, в котором порошок диоксида урана получают через полиуранат аммония (АДУ-процесс) [1]. Полученный порошок с размером частиц от 4 до 30 мкм прессуют в таблетки, спекают и шлифуют. Недостатком данного способа является неоптимальный (не более 10-20 мкм) средний размер зерен таблеток, что приводит к неполному по глубине выгоранию и неиспользованию ресурса тепловыделяющих элементов (ТВЭЛ) в полном объеме.
Известен способ изготовления керамических топливных таблеток ядерных реакторов [2] в котором используют особые свойства ультрадисперсного (нано-) состояния вещества, в числе которых развитая удельная поверхность и большая запасенная внутренняя энергия [3], путем добавки ультрадисперсного (нанокристаллического) порошка (УД) диоксида урана в количестве от 5-10 до 30% в смесь для прессования таблеток, что приводит к увеличению размера зерна до 30 мкм при спекании, либо к снижению температуры спекания при сохранении стандартного размера зерна.
Наиболее близким к предлагаемому изобретению и выбранным в качестве прототипа является способ получения ядерного уран-гадолиниевого топлива высокого выгорания на основе диоксида урана [4], в котором применяют добавки микрокристаллических порошков оксидов алюминия и хрома, при производстве топливных таблеток с выгорающим поглотителем Gd2O3, что приводит к росту размера зерна и увеличению глубины выгорания топлива. Недостатком данного способа является недостаточно большой размер зерна получаемых таблеток (20-25 мкм), что приводит к неполному выгоранию топлива в процессе эксплуатации вследствие распухания и разрушения топливных таблеток.
Технический результат, на который направлено изобретение, заключается в увеличении глубины выгорания и продлении топливной кампании уран-гадолиниевых таблеток на сроки более 5 лет.
Указанный технический результат достигается за счет увеличения размера зерна топливных таблеток путем введения в исходную смесь для прессования таблеток добавок оксидных нанокристаллических порошков. В предлагаемом способе изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов, включающем прессование и спекание из порошка диоксида урана, к стандартному порошку UO2 с удельной поверхностью частиц 2,0-2,2 м /г до прессования добавляют ультрадисперсный порошок UO 2 с удельной поверхностью 10,5-11,0 м2/г, в количестве 5-10% масс., и нанокристаллический порошок оксида Gd2O3 от 3 до 5% масс., затем в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксидов 3-х, 4-х и 5-ти зарядных металлов. Частицы ультрадисперсного порошка диоксида урана (УД), средний размер которых не превышает длину диффузии вакансии урана за время выдержки спрессованной таблетки при температуре спекания, и частицы оксидных нанопорошков, окружающие более крупные частицы стандартного порошка (Ст), играют роль диффузионных мостов между ними. Их диффузионное сцепление обеспечивается не только пятнами взаимного контакта, но и нанокристаллическими частицами. При этом для заполнения пустот в частицах Ст порошка мелкими частицами УД порошка UO2 и нанокристаллических порошков оксидов металлов необходимо содержание в смеси нанокристаллического порошка UO2 до 5-10%, а оксидных порошков до 0,02-0,1% (в зависимости от частных случаев добавок). Добавки меньших количеств нанопорошков не дают заметного эффекта по увеличению зерна, а превышение указанных диапазонов влечет недопустимое снижение плотности получаемых таблеток.
При этом, в частном случае предлагаемого способа в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки оксидов 3-зарядных металлов, в качестве которых используют Al2O3 от 0,012 до 0,015% масс, и Сr 2O3 от 0,006 до 0,015%.
В другом частном случае в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки 4-зарядного металла, в качестве которого используют ТiO2 от 0,012 до 0,015% масс.
В другом частном случае в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют нанокристаллические порошки 5-зарядного металла, в качестве которого используют ND2O5 от 0,006 до 0,015% масс.
В другом частном случае в полученную предварительную смесь изотопов урана и оксида гадолиния добавляют совокупность нанокристаллических порошков 3-, 4- и 5-зарядных металлов, а именно: Al2O3 от 0,012 до 0,015% масс, Сr2O3 от 0,006 до 0,015%, ТiO2 от 0,012 до 0,015% масс., Nb2O5 от 0,006 до 0,015% масс.
Далее приведены примеры реализации предлагаемого способа.
Во всех приведенных ниже примерах порошки перед прессованием смешивали в течение 3 часов в смесителе типа «пьяная бочка» (п=15 об/мин).
УД порошок диоксида урана получали методом осаждения полиураната аммония (ПУА) при температуре 50-55°С из раствора уранилнитрата с концентрацией урана 75 г/дм. Осаждение проводили по методу "последней капли" - совместным сливанием аммиачной воды и раствора нитрата уранила в буферный раствор. Значение рН системы поддерживали в диапазоне 3,5-8,5. Осаждение длилось 0,5 часа, агитация пульпы 0,5 часа. Отфильтрованный осадок ПУА промывали в дистиллированной воде, сушили на воздухе и прокаливали при температуре 650°С до закиси-окиси урана. Порошок диоксида урана получали путем восстановления ПУА при температуре 650°С в токе водорода.
При синтезе однофазных нанокристаллических оксидных порошков (за исключением готовых реактивов Nb2 O5 марки «ЧДА») использовалась следующая методика: исходные растворы солей металлов осаждались водным раствором NH4OH при рН 9-10. Полученные осадки промывали дистиллированной водой, сушили при 90°С в течение 10-12 ч. Высушенные осадки растирали в агатовой ступке. Далее прекурсоры подвергали изотермическому отжигу при температуре 600°С в течение 3 ч.
Физико-химические характеристики Ст и УД диоксида урана и нанокристалличе-ских порошков оксидов Gd2O3, ТiO2, Nb2O 5, Al2O3, Сr2Oз приведены в таблице 1.
Предварительную смесь, общую для всех примеров, готовили смешивая УД порошок UO2 в количестве 5% масс, стандартный UO2 и порошок Gd 2O3 в количестве 5% масс.
В первом примере в предварительную смесь изотопов урана и оксида гадолиния добавляли нанокристаллические порошки Al2O3 в количестве 0,015% масс, и Сr2О3 в количестве 0,006% масс.
Во втором примере в предварительную смесь изотопов урана и оксида гадолиния добавляли нанокристаллический порошок ТiO2 в количестве 0,015% масс.
В третьем примере в предварительную смесь изотопов урана и оксида гадолиния добавляли нанокристаллический порошок Nb2 O5 в количестве 0,006% масс.
В четвертом примере в предварительную смесь изотопов урана и оксида гадолиния добавляли нанокристаллические порошки всех вышеперечисленных оксидов в вышеуказанных соотношениях.
После этого полученные смеси прессовали в таблетки по стандартной технологии и спекали при температуре 1750°С.
Составы смесей получаемых таблеток представлены в таблице 2.
На основании данных измерений микроструктуры топливных таблеток с помощью растровой электронной микроскопии установлено, что добавки нанокристаллических порошков Gd2O3 , Al2O3, Сr2О3, ТiO 2, Nb2O5 увеличивают рост зерна в 2-3 раза, по сравнению с исходным UO2.
Введение добавок нанокристаллических порошков увеличивает также пластичность таблетки, что положительно влияет на эксплуатационные свойства тепловыделяющих элементов (ТВЭЛ).
На основании проведенных исследований определены условия изготовления модифицированного ядерного топлива:
- доля ультрадисперсных (нанокристаллических) порошков U02 в составе таблеток не должна превышать 5-10%, т.к. при их большей концентрации плотность исходной смеси значительно отличается от теоретической и для прессования потребуется либо высокие давления, либо экстремально высокие скорости;
- основой исходной смеси порошков должны быть крупнокристаллические порошки диоксида урана, производимые на предприятиях атомной отрасли Российской Федерации (ОАО ТВЭЛ), для которых создано технологическое оборудование;
- количество добавки оксида гадолиния должно быть в диапазоне 3-5% масс, чтобы она растворилась в основной фазе диоксида урана;
Таким образом, приведенные примеры показывают, что ядерное уран-гадолиниевое топливо, выполненное в соответствии с частными случаями изобретения (добавки нанокристаллических порошков оксидов ТiO2, Nb2O5 , Al2O3, Сr2O3 или их совокупности), существенно превосходит стандартное топливо по показателю среднего размера зерна - 25-63 мкм (вместо 10-20 мкм). Практическое использование предлагаемого топлива позволит существенно повысить надежность ТВЭЛов при работе атомных электростанций как в штатных, так и переходных режимах, и повысить глубину выгорания такого топлива. Кроме того, технологические и эксплуатационные свойства легированного топлива улучшаются за счет увеличения пластичности (снижение сопротивления деформированию), повышая тем самым надежность работы тепловыделяющих сборок.
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
1. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. - М.: Энергоатомиздат, (1995).
2. Петрунин В.Ф., Малыгин В.Б., Федотов А.В. и др. Способ изготовления керамических топливных таблеток ядерных реакторов, патент РФ № 2186431, (2002).
3. Морохов И.Д., Петинов В.И., Петрунин В.Ф. и др. Успехи физических наук, т.133, (1981).
4. Лысиков А.В., Кулешов А.В., Самохвалов А.Н. Ядерное уран-гадолиниевое топливо высокого выгорания на основе диоксида урана и способ его получения, патент РФ № 2362223, (2009).
Таблица 1 | ||||
Порошок | Удельная поверхность, м2 /г | Плотность, г/см3 | Размер кристаллитов (ОКР), нм | Фазовый состав |
Gd2O3 | 29,8 | 2,01 | 13 | Кубический Gd 2O3 |
Аl2 O3 | 33,12 | 0,86 | 5 | Кубический -Аl2O3 |
Cr2O3 | 13,3 | 0,93 | 29 | Эсколаит |
TiO2 | 16,2 | 1,13 | 29 | Анатаз |
Nb 2O5 | 3,2 | 0,92 | 49 | Моноклинный Nb2O5 |
UO 2 (УД) | 11,0 | 1,65 | 46 | Кубический UO2 |
UO2 (Ct) | 2,2 | 1,97 | - | Кубический UO 2 |
Таблица 2 | |
Образец | Средний размер зерна, [мкм] |
UO2 (Ст) + 5% UO2 (УД) + 5% Gd2O3 + Аl2O 3 (0,015% масс. А1) + Сr2O3 (0,006% масс. Сr) | 40,39 |
UO2 (Ст) + 5% UO2 (УД) + 5% Gd2 O3 + ТiO2 (0,015% масс. Ti) | 28,11 |
UO2 (Ст) + 5% UO2 (УД) + 5% Gd2O3 + Nb 2O5 (0,006% масс. Nb) | 26,3 |
UO2 (Ст) + 5% UO2 (УД) + 5% Gd2O3 + Nb 2O5 (0,006% масс.Nb) + Al2O3 (0,015% масс. Al) + Cr2O3 (0,006% масс. Сr) + ТiO2 (0,015% масс. Ti) | 63,09 |
Класс G21C21/02 изготовление топливных или воспроизводящих элементов в неактивных оболочках
Класс C01G43/025 диоксид урана