способ очистки сточных вод от катионов тяжелых металлов
Классы МПК: | C02F1/48 магнитными или электрическими полями C02F1/62 соединения тяжелых металлов |
Автор(ы): | Макаров Владимир Михайлович (RU), Никитина Елена Леонидовна (RU), Ефимова Галина Александровна (RU), Шевелев Александр Витальевич (RU), Касалимова Марина Евгеньевна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2012-06-27 публикация патента:
20.01.2014 |
Изобретение может быть использовано для очистки стоков гальванических производств. Способ очистки сточных вод от катионов тяжелых металлов низкочастотным импульсным полем включает обработку в гетерогенной среде, создаваемой гидроксидом кальция в количестве не менее 12 ммоль/л, в электромагнитном аппарате с использованием энергии переменного электромагнитного поля, создаваемого магнитными элементами из магнитотвердого материала, движущимися под воздействием этого поля. Изобретение позволяет повысить эффективность очистки от катионов тяжелых металлов и сократить время очистки. 2 табл., 2 пр.
Формула изобретения
Способ очистки сточных вод от катионов тяжелых металлов низкочастотным импульсным полем, отличающийся тем, что сточные воды подвергают обработке в гетерогенной среде, создаваемой гидроксидом кальция не менее 12 ммоль/л в электромагнитном аппарате с использованием энергии переменного электромагнитного поля, создаваемого магнитными элементами, изготовленными из магнитотвердого материала, движущимися под воздействием этого поля.
Описание изобретения к патенту
Изобретение относится к способу очистки стоков гальванических производств. Основными токсичными отходами производства являются промывные воды смешанного состава, содержащие несколько видов тяжелых металлов. Увеличение эффективности очистки таких стоков - одна из самых актуальных задач настоящего времени. Анализ известных способов очистки сточных вод от катионов тяжелых металлов с использованием и без использования реагентов, как правило, не позволяет достичь конечного содержания примесей тяжелых металлов на уровне ПДК [Виноградов С.С. Экологически безопасное гальваническое производство / Под ред. Проф. В.Н. Кудрявцева. - Изд. 2-е перер. и доп., М.: Глобус , 2002. - с.169], если проводить очистку известными способами в одну стадию. Рекомендуемый способ может использоваться для очистки сточных вод, прошедших стадию механической очистки до значений ПДК.
Известен способ обработки сточных вод от органических примесей магнитным полем с использованием смеси перекиси водорода с сернокислым алюминием в количестве 0,03-0,05 г/л [Патент РФ № 2006483 C1, C02F 1/58, авт. Харин И.К, 1994 г.]. Однако в данном способе обработки от органических примесей процесс осуществляется в аппарате с вращающимся магнитным полем с индукцией магнитного поля 1,2 Тл, создаваемой магнитомягкими магнитными элементами, что требует повышенных энергозатрат.
Существует способ очистки и обеззараживания жидких сред в электромагнитном импульсном поле низкой частоты 12,5 Гц, силой тока 500 А [Патент РФ № 2131848, C1 C02F 1/48, авт. Артамонов О.В., Дубинин А.Ю., Журавлев С.Г. 1999 г.]. Недостатком данного способа является то, что указанный способ не обеспечивает очистку катионов тяжелых металлов, содержащихся в сточных водах. Кроме того, рабочий объем таких аппаратов не более 20 л при коэффициенте заполнения реактора магнитными элементами менее 10%.
Наиболее близким к заявляемому техническому решению по назначению и технической сущности является способ очистки сточных вод низкочастотным электромагнитным импульсным полем безреагентным методом [Заявка № 93046795 С02F 1/46, C02F 1/48, авт. Журавлев С.Г., Вятчинина Т.А., Артамонов О.В., Сергеев В.В., Дубинин А.Ю. 1996 г.]. Он характеризуется качественной очисткой сточных вод предприятий химической промышленности. Недостатком данного способа является длительность процесса, а также то, что указанный способ не обеспечивает очистку от катионов тяжелых металлов, содержащихся в сточных водах до ПДК.
Задачей изобретения является разработка более эффективного способа очистки сточных вод от катионов тяжелых металлов с использованием энергии переменного электромагнитного поля. Поставленная задача решается тем, что сточные воды подвергают обработке в гетерогенной среде, создаваемой гидроксидом кальция, соответствующая ГОСТ-9179-77 не менее 12 ммоль/л, в электромагнитном аппарате (ЭМА) с использованием энергии переменного электромагнитного поля, создаваемого магнитными элементами, изготовленными из магнитотвердого материала, движущимися под воздействием этого поля. При включении индуктора в электрическую сеть рабочие элементы, подвергаются воздействию магнитного поля и приводятся в интенсивное хаотическое движение, передавая энергию воде и находящимся в ней катионам тяжелых металлов. Передача энергии в этом случае происходит за короткое время, что в обычных условиях затруднено. Тем самым увеличивается химическая активность обрабатываемых веществ с гидроксидом кальция. В результате этого процесса катионы тяжелых металлов переходят в осадок, удаляемый последующим фильтрованием. Данный способ приводит к повышению эффективности очистки и сокращению времени на очистку.
Для изучения процесса очистки использовали электромагнитный аппарат с частотой 50 Гц, индукцией переменного магнитного поля 0,3 Тл, напряженностью магнитного поля 450 А/см, создаваемого предварительно намагниченными магнитными элементами, изготовленными из магнитотвердого материала, движущимися под воздействием этого поля.
Пример 1.
Сточная вода объемом 300 см, содержащая смесь катионов никеля, железа, меди, а также свинца в различных концентрациях (табл.1) подвергалась обработке гидроксидом кальция, соответствующая ГОСТ-9179-77 в количестве 12 ммоль/л в аппаратах: с механической мешалкой (МП) (скорость вращения 1000 об/мин) и в электромагнитном аппарате (ЭМА) с использованием энергии электромагнитного поля с частотой 50 Гц, индукцией переменного магнитного поля 0,3 Тл, напряженностью магнитного поля 450 А/см, создаваемого магнитными элементами, изготовленными из магнитотвердого материала, при коэффициенте заполнения реактора магнитными элементами 20%. Остаточные концентрации катионов металлов после очистки представлены в таблице 1. Пример 2.
Сточные воды, объемом 300 см, содержащая катионы никеля, железа, цинка и смесь катионов Ni:Fe подвергалась обработке в электромагнитном аппарате (ЭМА) с использованием энергии электромагнитного поля с частотой 50 Гц, индукцией переменного магнитного поля 0,3 Тл, напряженностью магнитного поля 450 А/см, с содержанием гидроксида кальция в количестве 0, 3, 5, 10, 16 ммоль/л, а также в электромагнитном аппарате (ЭМА) с использованием энергии электромагнитного поля с частотой 50 Гц, индукцией переменного магнитного поля 0,3 Тл, напряженностью магнитного поля 450 А/см, без использования гидроксида кальция, при коэффициенте заполнения реактора магнитными элементами от 10-50%. Остаточные концентрации катионов металлов после очистки представлены в таблице 2.
Проведенные исследования показали, что при очистке сточных вод, содержащих катионы тяжелых металлов в гетерогенной среде с использованием гашеной извести и, энергии переменного электромагнитного поля и магнитных рабочих элементов, движущихся под действием этого поля в электромагнитном аппарате, заявленным способом удается добиться высокой степени очистки воды от токсичных ионов.
Проведение предложенного способа очистки обеспечивает непрерывность процесса при высокой производительности, упрощается технологическая схема очистки сточной воды с возможностью ее автоматизации, сокращение времени на очистку.
Таблица 1 | ||||||
№ опыта | Катионы | Время опыта, мин | ПДК хоз-пит (СанПиН 2.1.4.559-96), мг/л | Остаточные концентрации катионов, мг/л | ||
Исходная | После МП | После ЭМА | ||||
1 | Fe+3 | 3 | 0,3 | 5,8 | 4,3 | 0,01 |
Ni+2 | од | 9,7 | 4,8 | 0,7 | ||
Cu+2 | 1 | 4,4 | 3,2 | 0,07 | ||
2 | Fe+3 | 8 | 0,3 | 5,8 | 2,1 | 0 |
Ni+2 | од | 9,7 | 5,1 | 0,01 | ||
Cu+2 | 1 | 4,4 | 2,4 | 0,01 | ||
3 | ||||||
Pb+2 | 5 | 0,03 | 4,5 | 2,19 | 0,05 | |
7 | 2,8 | 1,33 | 0,03 |
Таблица 2 | |||||||
Номер опыта | Наименование катиона | Сод. гидроксида кальция, ммоль/л | Продолжительность опыта, мин | Объем заполнения магнитными элементами, % | Исходная конц. катиона, мг/л | Остаточная концентрация катионов, в ЭМА с сод. гидроксида кальция | ПДК хоз-пит (СанПиН 2.1.4.559-96),мг/л |
1 | 0 | 7 | 7,8 | 0,1 | |||
3 | 7 | 30 | 8,4 | 3,4 | |||
5 | 5 | 1,5 | |||||
10 | 5 | 0,01 | |||||
16 | 9 | 0,01 | |||||
2 | Fe+5 | 0 | 5 | 5,1 | 0,3 | ||
3 | 5 | 50 | 6,3 | 1,2 | |||
5 | 8 | 0,01 | |||||
10 | 8 | 0 | |||||
16 | 8 | 0 | |||||
3 | Zn+2 | 0 | 6 | 0,85 | 5 | ||
3 | 6 | 10 | 1,2 | 0,5 | |||
5 | 6 | 0,1 | |||||
10 | 6 | 0,05 | |||||
16 | 7 | 0 | |||||
4 | Ni+2 | 0 | 7 | 0,97:10,5 | 0,1:0,3 | ||
Fe+3 | 3 | 7 | 30 | 1,5:14.3 | 0,9:2,7 | ||
5 | 7 | 0.15:0.01 | |||||
10 | 7 | 0.01:0 | |||||
16 | 7 | 0.01:0 |
Класс C02F1/48 магнитными или электрическими полями
Класс C02F1/62 соединения тяжелых металлов