способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением
Классы МПК: | G01S13/89 радиолокационные или аналогичные системы, предназначенные для картографрования или отображения |
Автор(ы): | Зражевский Алексей Юрьевич (RU), Новичихин Евгений Павлович (RU), Рыков Константин Николаевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук (RU) |
Приоритеты: |
подача заявки:
2012-06-07 публикация патента:
20.01.2014 |
Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости. Достигаемый технический результат - упрощение системы радиовидения, увеличение ее быстродействия и надежности. Указанный результат достигается за счет того, что оптическая система переносит в предметную плоскость излучения всех элементов объекта, которые модулируются различными между собой частотами и амплитудами, при этом модулированное излучение преобразуется в электрический сигнал, который разделяется на составляющие, каждая из которых представляет собой суммарный сигнал, принятый от элементов, излучения которых модулированы одинаковыми частотами. Для каждой составляющей формируется уравнение, состоящее из суммы произведений коэффициентов, пропорциональных амплитудам модулирующих функций на неизвестные яркости элементов. Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений. Решениями этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение. 1 ил.
Формула изобретения
Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением, заключающийся в приеме неподвижной антенной энергии, отраженной или излученной элементами объекта, модуляции различными частотами принятого излучения, отличающийся тем, что принятое от элементов объекта излучение дополнительно модулируют различными между собой амплитудами, модулированное по частоте и амплитуде излучение преобразуют в электрический сигнал, который разделяют на составляющие, отличающиеся друг от друга частотой модуляции, формируют для каждой составляющей уравнение, состоящее из суммы произведений коэффициентов ослабления излучения, пропорциональных амплитудам модулирующих функций, на неизвестные яркости элементов объекта, уравнения, сформированные в течение времени наблюдения, объединяют в системы уравнений, решением которых определяют яркости элементов объекта, по которым строят его оптическое изображение.
Описание изобретения к патенту
Настоящее изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в ММ диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости.
К настоящему времени известны способы формирования радиоизображений: с помощью фокальной двумерной матрицы приемников, с использованием многоэлементного интерферометра, с помощью фазированных матриц [1].
Перечисленные способы реализуются сложными приемными системами, состоящими из множества элементов, что снижает надежность систем, а разброс параметров элементов, обусловленный внешними факторами и технологией их изготовления, влияет на качество радиоизображений.
Наиболее близким аналогом является способ формирования радиопортрета объекта одним детектором, реализующимся сканированием объекта вращающимся рупором, принимающим от элементов объекта излучение, модулированное функциями с различными для каждого элемента параметрами (частотами). Принятый сигнал разделяется на составляющие, соответствующие излучению каждого элемента и преобразуется в оптическое изображение [2].
К недостатку способа можно отнести присутствие в нем элемента механического сканирования (вращающийся рупор), что снижает быстродействие и надежность устройства. Снижение надежности обусловлено тем, что для соединения вращающегося рупора с неподвижной частью устройства требуются сложные стыковочные приспособления.
Технический результат заключается в том, что упрощается конструкция системы радиовидения, увеличивается ее быстродействие и надежность.
Указанный технический результат в способе формирование радиопортрета объекта методом параллельной обработки с частотным разделением достигается тем, что оптическая система переносит в предметную плоскость излучения всех элементов объекта, которые модулируются различными между собой частотами и амплитудами.
Модулированное излучение преобразуются в электрический сигнал, который разделяется на сигналы, каждый из них представляет собой суммарный сигнал, принятый от элементов, излучения которых модулированы одинаковыми частотами. Для каждого такого сигнала формируется уравнение, состоящие из суммы произведений коэффициентов, пропорциональных амплитудам, модулирующих функций на неизвестные яркости элементов. Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений. В результате решения этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение.
Способ может быть реализован устройством, схема которого показана на фиг.1, где (1) - элементы наблюдаемого объекта, (2) - объект, (3) - оптическая система (антенна), (4, 5) - модулятор, (6) - рупор, (7) - детектор, (8) - частотный фильтр, (9) - вычислительное устройство.
Излучение всех элементов (1) объекта (2) принимается оптической системой (3) и переносится в предметную плоскость, где расположен модулятор (позиции 4, 5), выполненный в виде двух, установленных на одной оси, дисков с прорезями. В диске (4) прорези прозрачные, а в диске (5) закрыты поглотителями излучения с различными межу собой коэффициентами поглощения (на фиг.1 обозначены символами A1, А2, A3, , Ak). Сделаны прорези с постоянным угловым шагом и расположены на концентрических окружностях разного диаметра, показанных штриховыми линиями на диске (5) (см. фиг.1). Количество прорезей на разных окружностях различно между собой. На фиг.1 они показаны только на одной окружности. Диски вращаются относительно оси О-О по направлению, указанному стрелкой. Скорости их вращения различны между собой настолько, что диск (4) можно считать неподвижным в течение периода обращения диска (5). Это необходимо для того, чтобы обеспечить просмотр затененных элементов объекта.
Амплитудная и частотная модуляция реализуется вращением диска (5). Излучения, прошедшие через прорези, расположенные на различных окружностях будут модулированы разными частотами, а прошедшие через прорези расположенные на одной окружности будут модулированы одинаковыми частотами и различными между собой амплитудами.
Модулированное излучение принимается рупором (6), передается на детектор (7), преобразуется им в электрический сигнал, который разделяется частотным фильтром (8) на составляющие, каждая из них представляет собой суммарный сигнал, принятый от элементов, излучения которых модулировано одинаковыми частотами. Разделенный сигнал параллельно поступает на вычислительное устройство (9), формирующее для каждой составляющей уравнение,
где: А1 А2, А 3, , Ak - известные коэффициенты ослабления
излучения, х1 х2, х3,...., x k - яркости элементов объекта, k - количество элементов, Sk суммарный сигнал.
Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений {2}. Решениями этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение.
Уравнения системы {2} формируются последовательно в течение периода обращения диска (5). На фиг.1 показано его положение при формировании первого уравнения. Время формирования одного уравнения равно промежутку времени, за который диск (5) поворачивается на угол а. По истечении этого промежутка будет сформировано первое уравнение и начнет формироваться второе, по завершении его формирования начнет формироваться третье, и так далее, пока диск (5) не сделает полный оборот.
Открытие затененных элементов объекта обеспечивается вращением диска (4). Формирование всех систем уравнений завершится в течение времени, за которое он повернется на угол р.
Таким образом, предлагаемое изобретение позволяет упростить систему радиовидения и увеличить ее быстродействие.
Литература:
1. В.А. Годунов, А.Ю. Зражевский, М.Т. Смирнов, В.С. Аблязов, А.А. Халдин, А.Е. Максимов, В.П. Нестеров. Радиотепловые поляризационные портреты объектов и покровов в ММ диапазоне волн. // 2-ая Всероссийская научная конференция «Дистанционное зондирование земных покровов и атмосферы аэрокосмическими средствами». Сб. докладов, Санкт-Петербург, 2004, т.1, с.56-59.
2. Патент на изобретение № 2382382 от 04.02.2008, МПК G01S 13/89.
Класс G01S13/89 радиолокационные или аналогичные системы, предназначенные для картографрования или отображения