способ получения пироуглерода с трехмерно-ориентированной структурой на углеродном изделии

Классы МПК:C23C16/26 осаждение только углерода
Автор(ы):,
Патентообладатель(и):Кондратьев Виктор Николаевич (RU),
Смирнов Александр Николаевич (RU)
Приоритеты:
подача заявки:
2012-05-17
публикация патента:

Изобретение относится к производству углеродных материалов, а именно к технологии получения углеродных материалов осаждением из газовой фазы пироуглерода с трехмерно ориентированной структурой на углеродном изделии, и может быть использовано для восстановления фрикционного износа углеродных изделий. Осуществляют пиролиз газообразных углеводородов и осаждение из газовой фазы на нагретую поверхность углеродного изделия. В качестве углеводородов для пиролиза используют природный газ, осаждение осуществляют при температуре 1200-1300°C, при циклически изменяющемся в диапазоне от 0,1 кг/см2 до 1,05 кг/см2 абсолютном давлении природного газа, при этом время напуска и откачки задают в диапазонах 0,5-5 секунд и 1-10 секунд соответственно. Обеспечивается восстановление фрикционного износа углеродных изделий за счет увеличения толщины осаждаемого покрытия. 1 пр.

Формула изобретения

Способ получения пироуглерода с трехмерно-ориентированной структурой на углеродном изделии, включающий пиролиз газообразных углеводородов и осаждение из газовой фазы на нагретую поверхность углеродного изделия, отличающийся тем, что в качестве углеводородов для пиролиза используют природный газ, осаждение осуществляют при циклически изменяющемся в диапазоне от 0,1 кг/см2 до 1,05 кг/см2 абсолютном давлении природного газа, температуре осаждения 1200-1300°C, при этом время напуска и откачки задают в диапазонах 0,5-5 с и 1-10 с соответственно.

Описание изобретения к патенту

Изобретение относится к производству углеродных материалов, а именно к технологии получения углеродных материалов осаждением из газовой фазы пиролитического углерода с высокой степенью упорядоченности слоев на поверхности углеродных материалов, и может быть использовано для восстановления фрикционного износа углеродных изделий, например подшипников скольжения или дисков авиационных тормозов, а также для упрочнения поверхности и повышения эрозионной и окислительной стойкости углеродных деталей.

Для нанесения покрытий из пиролитического углерода в мировой практике широко используется изотермический способ осаждения при постоянном давлении природного газа.

Пироуглерод, осажденный на графитовую деталь при температуре 950-1200°C и постоянном давлении природного газа, состоит из поликристаллов с аморфными включениями и имеет невысокую степень упорядоченности структуры. Этот низкотемпературный пироуглерод не отличается достаточным сцеплением с углеродными материалами для того, чтобы использовать его с целью восстановления фрикционного износа углеродных изделий, испытывающих значительные механические напряжения.

Известен способ создания малопроницаемого пироуглеродного покрытия на графитовых цилиндрах предложенный американскими учеными R.L. Beatty and D.V. Kiplinger (pulse inpregnarion of graphite with carbon, Nuclear application and Technology, v.8 1978y. p.488-495. О), включающий пиролиз газообразных углеводородов при пульсирующим давлении. В качестве сырья ими был использован газ 1,4 бутадиен, температура пиролиза 660C°, в реакционной камере создавалось пульсирующее давление с шириной импульса до 10 сек. Известно, что при столь низкой температуре тяжелые углеводороды при пиролизе дают изотропный пироуглерод, который при значительных толщинах имеет склонность к растрескиванию. Поэтому известный способ пригоден лишь к заполнению открытой пористости углеродных образцов.

Кроме того, использование 1,4 бутадиена по сравнению с природным газом, используемым в заявляемом техническом решении является менее рентабельным.

В диапазоне 1200-1800°C пространственная структура пиролитического углерода осажденного при постоянном давлении природного газа еще более турбостратна, чем у низкотемпературного пироуглерода. Структура углерода, осажденного при температурах выше 1800°C и постоянном давлении газообразных углеводородов, постепенно переходит из турбостратной в упорядоченную графитовую. Проявление трехмерной упорядоченности структуры фиксируется обычно при температуре осаждения около 2100°C.

Наиболее близкий к заявляемому изобретению технический результат достигнут в способе осаждения слоев пироуглерода из тетрохлорида углерода (патент 2149215 от 20.05.2000 г. заявка № 98113173 приоритет от 13.07.1998 г.),

Известный способ позволяет получать пространственно ориентированный пиролитический углерод по внешнему виду поверхности и размеру сферолитов схожий с пироуглеродом, полученным в заявляемом способе в том же температурном диапазоне пиролиза.

К недостаткам известного способа относятся: сложное аппаратурное оформление, сравнительная дороговизна (по сравнению с природным газом) тетрохлорида углерода, а также то, что на выходе получается коррозионно-активная соляная кислота.

Техническим результатом заявляемого изобретения является восстановление фрикционного износа углеродных изделий путем увеличения толщины осаждаемого покрытия.

Указанный технический результат достигается тем, что в способе получения пироуглерода с трехмерно ориентированной структурой на углеродном изделии, включающем пиролиз газообразных углеводородов и осаждение из газовой фазы на нагретую поверхность углеродного изделия, согласно заявляемому техническому решению, в качестве углеводородов для пиролиза используют природный газ, осаждение осуществляют при циклически изменяющемся в диапазоне от 0,1 кг/см2 до 1,05 кг/см2 абсолютном давлении природного газа, температуре осаждения 1200-1300°C, при этом время напуска и откачки задают в диапазонах 0,5-5 секунд и 1-10 секунд соответственно.

Заявляемый способ осуществляют следующим образом. Процесс осаждения ведут посредством пиролиза в среде природного газа при циклически изменяющемся абсолютном давлении в диапазоне от 0,1 кг/см2 до 1,05 кг/см2.

В зависимости от требуемых размеров конусов роста и толщины их слоев задают время напуска и откачки в диапазонах 0,5-5 секунд и 1-10 секунд соответственно. Углеродную поверхность нагревают в температурном диапазоне от 1200÷1300°C.

Заявляемый способ позволяет наращивать на поверхность углеродных деталей пиролитический углерод, состоящий из конусов слоистой структуры, причем его слои толщиной 1-5 мкм имеют волнообразное строение и переходят с одного конуса на другой, создавая упорядоченную структуру в трех измерениях.

По сравнению с пироглеродом, осажденном при постоянном давлении до 1200°C, полученный в соответствии с заявляемым способом пиролитический углерод может наращиваться подобно пироуглероду осажденному при температуре выше 1800°C°, до толщины несколько миллиметров, при этом его соединение с деталью остается прочным.

Параметры режима осаждения, реализованные в соответствии с заявляемым способом, приводят к возникновению трехмерно ориентированной структуры пиролитического углерода, состоящего исключительно из вторичных конусов роста. Использование температуры осаждения выше 1200°С приводит к значительному увеличению количества центров кристаллизации на поверхности очередного слоя, что обуславливает межслоевую прочность конусов роста.

В совокупности эти факторы и приводят к возможности наращивания пиролитического углерода с гарантированным сцеплением с подложкой.

Кроме того, при выборе температуры и давления процесса обычно учитывается состав природного газа, а именно соотношение метана к тяжелым углеводородам. В заявляемом способе температура устанавливается на границе образования сажи, что позволяет не учитывать состав природного газа, который зависит от его месторождения, так как в газовой сети состав не контролируется и поэтому является смесью от различных месторождений.

При осаждении используется только начальная часть времени газового импульса, во время которого и происходит гетерогенное осаждение. Вклад остальной части времени импульса незначителен ввиду того, что момент сброса давления выбирается так чтобы ограничить концентрацию жидких продуктов пиролиза в виде взвешенных частиц вблизи нагретой поверхности. Тем самым и достигается устранение влияния гомогенного осаждения пиролитического углерода на его конечную структуру.

В результате: пиролитический углерод, осажденный по заявляемому способу, состоит исключительно из сросшихся конусов роста с диаметром 10÷25 µкм с преобладающей вторичной конусностью.

Нижний предел температуры 1200C° обусловлен тем, что при более низкой температуре процесс осаждения пиролитического углерода при указанных временах напуска и откачки резко замедляется или не идет вообще.

Верхний предел температуры 1300C° осаждения обусловлен тем, что выше указанного предела сужением времени напуска становится невозможным предотвратить осаждение изотропного бесструктурного пиролитического углерода.

Верхний предел времени напуска 5 секунд обусловлен тем что, дальнейшее увеличение этого параметра приводит к возникновению сажеобразования.

Нижний предел времени напуска 0,5 сек. обусловлен тем, что процесс осаждения пиролитического углерода за этим пределом резко замедляется.

Нижний предел времени откачки 10 сек. обусловлен снижением производительности процесса, так как глубина откачки не влияет на качество осаждаемого пироуглерода, а время этой части значительно увеличивает время цикла и соответственно снижает его производительность.

Верхний предел времени откачки 1 сек связан с достижением необходимого разряжения в камере, которое выбирают из необходимой толщины слоев конусов роста. В данном процессе понижение давления ниже 0,1 кг/см2 приводит к сильному замедлению осаждения, повышение давления выше 1,05 кг/см2 нецелесообразно из-за того, что выше этого предела по «Правилам безопасности систем газораспределения и потребления» оборудование будет относиться к среднему классу давления, что неоправданно усложнит требования к оборудованию, его конструированию и эксплуатации.

Пример:

Партия графитовых подшипников крейцкопфа кислородного насоса была восстановлена до диаметра 80 мм путем наращивания пироуглерода на поверхность. Параметры процесса составили температура 1250C°, время откачки 5 сек, время напуска1 сек, давление напуска 1,02 кг/см2, давление откачки 0,3 кг/см2, среда - природный газ. Время процесса 7 часов. Толщина осажденного пироуглерода 0,2 мм.

Заявляемое техническое решение позволяет получить новые свойства осажденного пироуглерода, а именно его способность сращиваться с углеродной поверхностью подложки при этом слои ориентированы волнообразно, что снижает анизотропию и, в свою очередь, дает возможность многократно увеличить толщину осаждаемого покрытия и восстановить фрикционный износ углеродных изделий.

Класс C23C16/26 осаждение только углерода

способ осаждения пироуглерода на топливные частицы -  патент 2518048 (10.06.2014)
способ нанесения покрытия для пассивации кремниевых пластин -  патент 2509175 (10.03.2014)
композитное покрытие из металла и cnt и/или фуллеренов на ленточных материалах -  патент 2485214 (20.06.2013)
установка вакуумной обработки и способ вакуумной обработки -  патент 2472869 (20.01.2013)
способ получения покрытий из углеродных наноматериалов и устройство для его реализации -  патент 2405739 (10.12.2010)
способ нанесения алмазоподобной углеродной пленки на подложку из органического стекла -  патент 2401883 (20.10.2010)
способ химической инфильтрации в газовой фазе для уплотнения пористых субстратов пиролитическим углеродом -  патент 2398047 (27.08.2010)
внутренний электрод, предназначенный для формирования защитной пленки, и устройство формирования пленки -  патент 2366757 (10.09.2009)
устройство роста углеродных нанотрубок методом пиролиза этанола -  патент 2365674 (27.08.2009)
способ получения углеродных нанотрубок -  патент 2364569 (20.08.2009)
Наверх