способ измерения интенсивности излучения

Классы МПК:G01T3/06 с помощью сцинтилляционных детекторов
Автор(ы):
Патентообладатель(и):Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (RU)
Приоритеты:
подача заявки:
2012-09-07
публикация патента:

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом изобретения является измерение вклада фонового излучения в сигнал детектора, повышение точности измерений, обеспечение измерений в сложных радиационных условиях, уменьшение ограничений на размеры детектирующего элемента. Технический результат достигается тем, что для измерения интенсивности излучения источника измеряют пространственное распределение полного сигнала Iполн(х) вдоль направления распространения первичного излучения, нормируют методом наименьших квадратов измеренное и теоретическое распределения до совпадения их значений на начальном участке, находят пространственное распределение фонового сигнала из условия:

Iфон(х)=Iполн (х)-Iтеор(х),

а пространственное распределение полезного сигнала находят как разность между распределениями полного и фонового сигналов, где:

Iтеор (х)=А·ехр[-µ(E)·x] - теоретическое распределение полезного сигнала вдоль направления распространения первичного излучения,

Iполн(х) - пространственное распределение полного сигнала,

µ(Е) - коэффициент линейного ослабления первичного излучения в веществе сцинтиллятора,

x - направление первичного излучения,

Е - энергия первичного излучения. 1 ил. способ измерения интенсивности излучения, патент № 2505841

способ измерения интенсивности излучения, патент № 2505841

Формула изобретения

Способ измерения интенсивности излучения, основанный на измерении распределения сигнала по глубине при одностороннем облучении, отличающийся тем, что для измерения интенсивности излучения источника с помощью сцинтиллятора, протяженного вдоль направления первичного пучка, на боковой поверхности которого расположен позиционно-чувствительный фотоприемник, снабженный матричным коллиматором, измеряют пространственное распределение полного сигнала Iполн(x) вдоль направления распространения первичного излучения, нормируют методом наименьших квадратов измеренное и теоретическое распределения до совпадения их значений на начальном участке, находят пространственное распределение фонового сигнала из условия

Iфон(х)=I полн(х)-Iтеор(x),

а пространственное распределение полезного сигнала находят как разность между распределениями полного и фонового сигналов, где:

Iтеор(х)=А·ехр[-µ(Е)·х] - теоретическое распределение полезного сигнала вдоль направления распространения первичного излучения;

Iполн (х) - пространственное распределение полного сигнала;

µ(Е) - коэффициент линейного ослабления первичного излучения в веществе сцинтиллятора;

х - направление первичного излучения;

Е - энергия первичного излучения.

Описание изобретения к патенту

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов.

Известно устройство для измерения интенсивности излучения с автоматическим вычитанием фона, содержащее последовательно соединенные детектор излучения и формирователь импульсов соответственно основного и компенсационного каналов, разностный вычислительный блок, интегратор с информационным входом и с выводом обнуления, выходы которого являются выходами устройства, и распределитель импульсов, подключенный входами к выходам формирователей импульсов соответственно основного и компенсационного каналов и выходами к суммирующему и вычитающему входам вычислительного блока, выход которого соединен с информационным входом интегратора, в который введены регистр коэффициента преобразования и элемент ИЛИ, а разностный вычислительный блок выполнен в виде реверсивного счетчика с D-входами установки кода и с S-входом предустановки, подключенными соответственно к выходам регистра установки коэффициента преобразования и к выходу элемента ИЛИ, входы которого соединены соответственно с информационным входом и выводом обнуления интегратора (Патент Российской Федерации № 1431515, МПК: G01T 1/17, 1995 г.) - Аналог.

Известен способ измерения параметров нейтронного излучения, основанный на замедлении нейтронов с последующей их регистрацией детекторами тепловых нейтронов, в котором с помощью цилиндрического замедлителя и серии детекторов тепловых нейтронов, расположенных на различной глубине вдоль его оси, измеряют распределение замедлившихся нейтронов по глубине замедления при одностороннем облучении замедлителя вначале моноэнергетическими нейтронами различных энергий в диапазоне от тепловых до 14-18 Мэв, а затем нейтронным пучком, параметры которого подлежат определению, и далее по совокупности полученных распределений определяют параметры нейтронного излучения (Авторское свидетельство СССР № 513563, МПК: G01T 3/00, 1984 г.) - Прототип.

При регистрации излучения в сигнал детектора помимо первичного излучения вносит вклад излучение, возникающее из-за рассеяния первичного излучения в окружающих детектор предметах, в просвечиваемом образце (в случае радиографии) и в самом детекторе.

Так, в радиографическом детекторе быстрых 14 МэВ нейтронов с пластмассовым сцинтиллятором оптимальной, с точки зрения обеспечения максимальной эффективности регистрации, протяженности вдоль направления нейтронного пучка (около 10 см) вклад от рассеянных в сцинтилляторе нейтронов может достигать 50%.

Вклад фонового излучения, связанного с окружающей средой зависит от условий измерения. Его учет является сложной задачей.

Техническим результатом изобретения является измерение вклада фонового излучения в сигнал детектора, повышение точности измерений, обеспечение измерений интенсивности источника излучения в сложных радиационных условиях, уменьшение ограничений на размеры детектирующего элемента, упрощение технической реализации.

Технический результат достигается тем, что в способе измерения интенсивности излучения, основанном на измерении распределения сигнала по глубине при одностороннем облучении, для измерения интенсивности источника излучения с помощью сцинтиллятора, протяженного вдоль направления первичного пучка, на боковой поверхности которого расположен позиционно-чувствительный фотоприемник, снабженный матричным коллиматором, измеряют пространственное распределение полного сигнала Iполн(х) вдоль направления распространения первичного излучения, нормируют методом наименьших квадратов измеренное и теоретическое распределения до совпадения их значений на начальном участке, находят пространственное распределение фонового сигнала из условия:

Iфон(x)=I полн(x)-Iтеор(x),

а пространственное распределение полезного сигнала находят как разность между распределениями полного и фонового сигналов, где:

Iтеор (x)=A·exp[-µ(E)·x] - теоретическое распределение полезного сигнала вдоль направления распространения первичного излучения,

Iполн(х) - пространственное распределение полного сигнала,

µ(Е) - коэффициент линейного ослабления первичного излучения в веществе сцинтиллятора,

x - направление первичного излучения,

Е - энергия первичного излучения.

Сущность изобретения поясняется чертежом на примере детектора со сцинтилляционным детектирующим элементом, где: 1 - источник моноэнергетического излучения, 2 - сцинтиллятор, 3 - матричный коллиматор, 4 - позиционно-чувствительный фотоприемник.

Источник моноэнергетического излучения 1 и сцинтиллятор 2 расположены на достаточно большом расстоянии, чтобы на сцинтиллятор 2 падал направленный пучок излучения.

Первичное излучение источника моноэнергетического излучения 1, попадающее в сцинтиллятор 2, взаимодействует с ним, образуя сцинтилляционные фотоны, распространяющиеся изотропно во все стороны. В результате взаимодействия излучения со сцинтиллятором 2 интенсивность первичного излучения и вызываемого им сцинтилляционного сигнала падает по мере удаления от торцевой поверхности сцинтиллятора 2, обращенной к источнику моноэнергетического излучения 1, по экспоненциальному закону с известной константой спада, определяемой видом и энергией излучения, а также материалом сцинтиллятора 2.

Рассеянное и/или фоновое излучение отличаются от излучения источника энергией, направлением распространения или типом. Вследствие чего спад вызываемого ими сцинтилляционного сигнала происходит не экспоненциально и обычно значительно быстрее по сравнению с сигналом от первичного излучения.

Сцинтилляционные фотоны, вызванные рассеянным и/или фоновым излучением, распространяются также изотропно во все стороны, в том числе, и через боковую поверхность сцинтиллятора 2 на позиционно-чувствительный фотоприемник 4. Фотоны, выходящие через боковые поверхности сцинтиллятора 2 в направлении, близком к перпендикулярному, несут информацию о пространственном распределении полного сигнала состоящего из полезного сигнала и сигнала, вызванного рассеянным и/или фоновым излучением. Пространственное распределение полного сигнала вдоль направления распространения первичного излучения Iполн (х) измеряют с помощью позиционно-чувствительного фотоприемника 4, снабженного матричным коллиматором 3 с непрозрачными для света стенками. Матричный коллиматор 3 обеспечивает избирательную по углу регистрацию сцинтилляционных фотонов, в телесном угле с осью, перпендикулярной направлению распространения первичного излучения и обеспечивает тем самым измерение пространственного распределения сцинтилляционного сигнала. Величина телесного угла определяет пространственное разрешение позиционно-чувствительного фотоприемника 4. Пространственное разрешение можно регулировать, в частности за счет изменения отношения поперечного размера матричного коллиматора 3 к его длине. В простейшем случае в качестве матричного коллиматора 3 служит волоконно-оптическая шайба.

Пространственное распределение сигнала, вызванного рассеянным и/или фоновым излучением, Iфон(х), определяют вычитанием из пространственного распределения полного сигнала Iполн (х), измеряемого позиционно-чувствительным фотоприемником 4, теоретического (экспоненциально спадающего) предварительно рассчитанного распределения полезного сигнала:

Iфон (x)=Iполн(x)-Iтеор(x)

Для этого оба распределения совмещают (нормируют) таким образом, чтобы их значения совпадали по методу наименьших квадратов на начальном участке, где можно пренебречь вкладом от рассеянного и/или фонового излучения, а также вкладом шумового сигнала фотоприемника. Сигнал, вызванный рассеянным и/или фоновым излучением Iфон (х), и полный сигнал Iполн(х), интегрируют по всей длине позиционно-чувствительного фотоприемника 4.

Интегральное значение фонового сигнала определяется выражением:

Sфон=способ измерения интенсивности излучения, патент № 2505841 Iфон(xi)

где x i - i-й пиксель позиционно-чувствительного фотоприемника, Интегральное значение полного сигнала определяется выражением:

Sфон=способ измерения интенсивности излучения, патент № 2505841 Iполн(xi)

Значение полезного сигнала детектора S находят как разность между интегральными значениями полного сигнала и сигнала, вызванного рассеянным и/или фоновым излучением:

Sфон=способ измерения интенсивности излучения, патент № 2505841 Iполн(xi)-Sфон=способ измерения интенсивности излучения, патент № 2505841 Iфон(xi)

Вычитание сигнала, обусловленного рассеянным и/или фоновым излучением, обеспечивает уменьшение влияния этих излучений на измеряемую интенсивность монохроматического излучения, повышает точность измерения полезного сигнала, обеспечивает проведение измерений в условиях высокого уровня фоновых излучений, уменьшает ограничения на поперечные размеры сцинтиллятора 2, которые обычно накладываются для уменьшения вклада рассеянного в сцинтилляторе 2 излучения, упрощает техническую реализацию измерений.

Класс G01T3/06 с помощью сцинтилляционных детекторов

сцинтилляционный материал и соответствующий спектральный фильтр -  патент 2519131 (10.06.2014)
устройство и способ для детектирования нейтронов посредством калориметрии на основе гамма-захвата -  патент 2502088 (20.12.2013)
устройство и способ для детектирования нейтронов с помощью поглощающих нейтроны калориметрических гамма-детекторов -  патент 2501040 (10.12.2013)
сцинтиллятор для детектирования нейтронов и нейтронный детектор -  патент 2494416 (27.09.2013)
герметически закрытая компоновка и нейтронное экранирование для детекторов радиоактивного излучения сцинтилляционного типа -  патент 2481598 (10.05.2013)
сцинтилляционный детектор -  патент 2449319 (27.04.2012)
годоскоп -  патент 2416112 (10.04.2011)
твердотельный детектор нейтронов -  патент 2413246 (27.02.2011)
сцинтилляционный детектор нейтронов -  патент 2412453 (20.02.2011)
сцинтилляционный детектор -  патент 2408905 (10.01.2011)
Наверх