способ оценки стойкости сварных изделий из низкоуглеродистых сталей к коррозионному растрескиванию под напряжением

Классы МПК:G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ИТ-СЕРВИС" (RU)
Приоритеты:
подача заявки:
2012-08-31
публикация патента:

Изобретение относится к области исследования устойчивости металлов и сплавов к воздействию агрессивных сред и может быть использовано, в частности, для оценки надежности и долговечности сварных труб, предназначенных для строительства нефтегазопроводов. Согласно предлагаемому способу от изделия отбирают образец из области сварного соединения, изготавливают из образца поперечный шлиф, поверхность которого подготавливают травлением, и осуществляют измерение микротвердости по продольным линиям, расположенным по наружному шву, центру и внутреннему шву. Затем по каждой линии определяют средние значения микротвердости основного металла и металла в ЗТВ. Далее вычисляют разницу этих значений и среднюю величину разницы микротвердости основного металла и металла в ЗТВ, по которой оценивают стойкость сварного шва к коррозионному растрескиванию под напряжением. Техническим результатом является сокращение длительности и упрощение производимых операций для получения достоверной экспресс-оценки стойкости сварных изделий к коррозионному растрескиванию под напряжением. 1 табл.,1 ил. способ оценки стойкости сварных изделий из низкоуглеродистых   сталей к коррозионному растрескиванию под напряжением, патент № 2506564

способ оценки стойкости сварных изделий из низкоуглеродистых   сталей к коррозионному растрескиванию под напряжением, патент № 2506564

Формула изобретения

Способ оценки стойкости сварных изделий из низкоуглеродистых сталей к коррозионному растрескиванию под напряжением, при котором от изделия отбирают образец из области сварного соединения, изготавливают из образца поперечный шлиф, поверхность которого подготавливают травлением, и замеряют микротвердость на поперечном сечении сварного соединения, отличающийся тем, что осуществляют измерение микротвердости по продольным линиям, расположенным по наружному шву, центру и внутреннему шву, по каждой линии определяют средние значения микротвердости основного металла и металла в зоне термического влияния, вычисляют разницу этих значений и среднюю величину разницы микротвердости основного металла и металла в зоне термического влияния, по которой оценивают склонность сварного шва к коррозионному растрескиванию под напряжением.

Описание изобретения к патенту

Изобретение относится к области исследования устойчивости металлов и сплавов к воздействию агрессивных сред и может быть использовано, в частности, для оценки надежности и долговечности сварных труб, предназначенных для строительства нефтегазопроводов.

Важнейшим элементом обеспечения надежности и долговечности сварных изделий является качество сварного шва и его достаточная стойкость к коррозионному растрескиванию под напряжением. Известен способ испытания труб на коррозионную стойкость, при котором из трубы вырезают цилиндрический образец, содержащий сварной шов, а о коррозионной стойкости металла судят по времени до разрушения образца, помещенного в агрессивную среду, под действием одноосного растягивающего напряжения заданного уровня (стандарт NACE ТМ0177, метод А). К недостаткам способа следует отнести длительность и трудоемкость испытаний.

Наиболее близким к предлагаемому является способ оценки стойкости сварных изделий из трубных марок сталей к коррозионному растрескиванию под напряжением, при котором от изделия отбирают образец из области сварного соединения, изготавливают из образца поперечный шлиф, поверхность которого подготавливают травлением, и замеряют микротвердость на поперечном сечении сварного соединения, а о стойкости металла к растрескиванию судят по изменению микротвердости зоны термического влияния (Akihiko TAKAHASHI and Hiroyuki OGAWA. Influence of Softened Heat-affected Zone on Stress Oriented Hydrogen Induced Cracking of a High Strength Line Pipe Steel. ISIJ International, Vol.35 (1995), No. 10, pp.1190-1195). Данный способ, однако, не предусматривает количественную оценку стойкости сварных изделий в зависимости от изменения микротвердости зоны термического влияния (ЗТВ).

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке способа экспресс-оценки стойкости металла сварных швов к коррозионному растрескиванию под напряжением.

Поставленная задача решается путем того, что согласно предлагаемому способу от изделия отбирают образец из области сварного соединения, изготавливают из образца поперечный шлиф, поверхность которого подготавливают травлением, и замеряют микротвердость на поперечном сечении сварного соединения, в отличие от прототипа осуществляют измерение микротвердости по продольным линиям, расположенным по наружному шву, центру и внутреннему шву, по каждой линии определяют средние значения микротвердости основного металла и металла в ЗТВ, вычисляют разницу этих значений и среднюю величину разницы микротвердости основного металла и металла в ЗТВ, по которой оценивают стойкость сварного шва к коррозионному растрескиванию под напряжением.

Технический результат, обеспечиваемый при осуществлении данного способа, выражается в сокращении длительности и упрощении производимых операций для получения достоверной экспресс-оценки стойкости сварных изделий к коррозионному растрескиванию под напряжением.

Сущность предложенного способа поясняется следующим примером конкретного выполнения. В качестве объектов исследования были выбраны нефтегазопроводные прямошовные трубы, изготовленные из листового проката (сталь марки 13ХФА) путем автоматической дуговой сварки под слоем флюса по различным технологическим режимам. От труб были вырезаны пробы, содержащие сварной шов, и изготовлены поперечные микрошлифы. Анализируемую поверхность подготавливали травлением в 4%-ном спиртовом растворе азотной кислоты. Схема замера микротвердости проводилась в соответствии с фиг.1. Измерение микротвердости осуществляли по трем продольным линиям: 1 - наружный шов, 2 - центр, 3 - внутренний шов. Позициями 4 и 5 обозначены соответственно основной металл и ЗТВ. Микротвердость измерялась ЗТВ и в основном металле труб вдавливанием алмазной пирамидки под нагрузкой 100 грамм. Расстояние между отпечатками составляло 0, 2 мм.

Результаты проведенных испытаний приведены в таблице. Оценивалась степень разупрочнения - величина, характеризующая падение значений микротвердости в ЗТВ.

способ оценки стойкости сварных изделий из низкоуглеродистых   сталей к коррозионному растрескиванию под напряжением, патент № 2506564

Анализ результатов исследований показал: для сварных швов с условной маркировкой 2 характерно значительное снижение микротвердости в ЗТВ. Степень разупрочнения составила 37HV100. Для образцов с условной маркировкой 1 степень разупрочнения не превышает 21 HV100.

Испытания металла сварных швов на стойкость к СКРН по методу А стандарт NACE TM0177 показали: образцы с условной маркировкой 2, характеризующиеся достаточно большой величиной степени разупрочнения в ЗТВ, преждевременно разрушились за время менее 720 часов. Сварные швы с условной маркировкой 1, у которых степень разупрочнения в ЗТВ значительно меньше, характеризуются достаточной стойкостью к СКРН.

Таким образом, результаты оценки стойкости сварных швов к коррозионному растрескиванию под напряжением предложенным способом хорошо коррелируются с результатами коррозионных испытаний по методу А, стандарт NACE TM0177. Сварные трубы, изготовленные из стали 13ХФА, должны иметь степень разупрочнения в ЗТВ не более 21 HV100.

Предложенный способ позволяет производить в процессе производства сварных труб экспресс-оценку их качества и используемых технологических режимов сварки, что в дальнейшем обеспечивает надежность и долговечность трубопроводов, при строительстве которых используются данные коррозионно-стойкие трубы.

Класс G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств

способ определения коррозионного состояния подземной части железобетонных опор -  патент 2528585 (20.09.2014)
способ прогнозирования долговечности промышленных противокоррозионных лакокрасочных покрытий для металлических поверхностей -  патент 2520164 (20.06.2014)
портативная лабораторно-полевая дождевальная установка -  патент 2519789 (20.06.2014)
способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением -  патент 2515174 (10.05.2014)
способ определения плотности дефектов поверхности оптической детали -  патент 2515119 (10.05.2014)
устройство для контроля проникновения локальной коррозии в металлические конструкции -  патент 2510496 (27.03.2014)
способ прогнозирования аварийного технического состояния трубопровода канализационной системы -  патент 2508535 (27.02.2014)
способ оценки стойкости стальных изделий против локальной коррозии -  патент 2504772 (20.01.2014)
установка для коррозионных испытаний -  патент 2502981 (27.12.2013)
способ управления кондиционером воздуха, кондиционер воздуха и устройство для измерения параметров окружающей среды -  патент 2495334 (10.10.2013)
Наверх