способ приготовления катализатора с низким содержанием редкоземельных элементов для крекинга нефтяных фракций
Классы МПК: | B01J37/10 в присутствии воды, например пара B01J29/08 типа фожазитов, например типа х или у |
Автор(ы): | Белявский Олег Германович (RU), Глазов Александр Витальевич (RU), Короткова Наталья Владимировна (RU), Горденко Владимир Иванович (RU), Гурьевских Сергей Юрьевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Газпромнефть-Омский НПЗ" (RU) |
Приоритеты: |
подача заявки:
2013-01-09 публикация патента:
20.03.2014 |
Изобретение относится к области катализа. Описан способ приготовления катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, в котором ультрастабилизацию цеолита проводят трижды: первую и вторую - на стадиях приготовления цеолита до смешения с компонентами матрицы, а третью ультрастабилизацию цеолита проводят в составе композиции катализатора, ионные обмены на катионы редкоземельных элементов и аммония проводят четырежды для получения ультрастабильного цеолита Y с содержанием оксида натрия не более 0,6 мас.%, оксидов редкоземельных элементов от 0,5 до 5,5 мас.% и содержания оксидов редкоземельных элементов в катализаторе от 0,05 до 1,1 мас.%. Технический результат - увеличение активности катализатора. 2 табл., 4 пр.
Формула изобретения
Способ приготовления катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что ультрастабилизацию цеолита проводят трижды: первую и вторую на стадиях приготовления цеолита до смешения с компонентами матрицы, а третью ультрастабилизацию цеолита проводят в составе композиции катализатора, ионные обмены на катионы редкоземельных элементов и аммония проводят четырежды для получения ультрастабильного цеолита Y с содержанием оксида натрия не более 0,6 мас.%, оксидов редкоземельных элементов от 0,5 до 5,5 мас.%, и содержания оксидов редкоземельных элементов в катализаторе от 0,05 до 1,1 мас.%.
Описание изобретения к патенту
Настоящее изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций для производства олефинов C2-C4 высокооктанового бензина.
В традиционном каталитическом крекинге, кроме высокооктанового бензина, легкого и тяжелого газойлей, образуются олефины C 2-C4, но их выход не превышает 12,0 мас.% (Sadeghbeigi R., Fluid catalytic cracking handbook: Design, Operation and Troubleshooting of FCC. - Second ed. - Gulf. Professional Publ., 2000. - P.155). Низкий выход легких олефинов и невысокие октановые числа бензинов крекинга связаны с большим вкладом реакций перераспределения водорода на катализаторах с высоким содержанием редкоземельных элементов в катализаторе (более 1,5 мас.%).
Современные цеолитсодержащие катализаторы представляют собой композиционные материалы, состоящие из активного компонента - цеолита HPЗЭY, и матрицы, включающей связующие и наполнитель. Цеолит НРЗЭY для получения высокооктанового бензина и увеличения отбора легких олефинов используется в ультрастабильной форме, то есть с повышенным решеточным модулем цеолита.
Известен катализатор и способ получения катализатора крекинга на основе ультрастабильного цеолита типа Y, каолина, источников оксидов алюминия и кремния [US Patent № 6114267, 2000]. В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составил 12.5 и содержание редкоземельных элементов в цеолите 4 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора.
Известен катализатор и способ приготовления катализаторов крекинга на основе ультрастабильного цеолита типа Y, аморфного алюмосиликата и каолина [US Patent № 4826793, 1989; № 3957689, 1976; № 3402996, 1968]. Ультрастабилизацию аммонийной формы цеолита проводят в среде 100% водяного пара при температурах от 538 до 816°С с получением цеолита, имеющего решеточный модуль в диапазоне от 7,0 до 12,0 и с содержанием редкоземельных элементов в цеолите от 4 до 14 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при его ультрастабилизации при высоких температурах и низкая активность получаемого катализатора, а также недостаточно высокий выход легких олефинов и низкие октановые числа получаемого на таком катализаторе бензина крекинга.
Известен способ приготовления ультрастабильного цеолита для катализатора крекинга (US Patent № 2011/0224067 А1), в котором на первой стадии приготовления цеолита проводят ультрастабилизацию аммонийной формы цеолита, а на второй стадии - ионный обмен на катионы аммония в гидротермальных условиях при температурах от 100 до 200°С. Затем проводят третий ионный обмен на катионы редкоземельных элементов. При получении катализатора из такого цеолита содержание редкоземельных элементов в катализаторе составляло от 0,5 до 10 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при его гидротермальной обработке при высоких температурах.
Известен катализатор и способ приготовления микросферического катализатора для крекинга нефтяных фракций (заявка РФ № 2011135562), включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита водяным паром, смешение цеолита с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что ультрастабилизацию цеолита проводят во вращающейся печи одно- или двукратно, причем до смешения с компонентами матрицы, фильтрацию цеолита осуществляют противоточно, при этом фильтраты последующих стадий ионных обменов используют в качестве промывных вод на предыдущих стадиях фильтрации, а ионный обмен катионов натрия в цеолите на катионы аммония проводят дважды или трижды. По данному способу получают ультрастабильный цеолит с решеточным модулем 5,2-6,0, содержащий 1,0-1,5 мас.% оксида натрия, 10-14 мас.% оксидов редкоземельных элементов, и/или ультрастабильный цеолит с решеточным модулем 6,0-10,0, содержащий 0,5-1,0 мас.% оксида натрия, 7-10 мас.% оксидов редкоземельных элементов. Недостатком предлагаемого катализатора является высокое содержание редкоземельных элементов и низкий выход легких олефинов C2-C 4.
Наиболее близким к предлагаемому является способ приготовления катализатора на основе ультрастабильного цеолита [Патент РФ № 2300420, 2005], в котором ультрастабилизацию цеолита проводят в две стадии. На первой стадии ультрастабилизации подвергают непосредственно цеолит, а на второй стадии ультрастабилизацию цеолита проводят в составе катализатора. В качестве матрицы используют смесь бентонитовой глины, аморфного алюмосиликата и гидроксида алюминия. Катализатор готовят путем проведения ионных обменов катионов натрия, содержащихся в цеолите, на катионы редкоземельных элементов и аммония, ультрастабилизации цеолита в среде водяного пара, смешения с компонентами матрицы, с последующей распылительной сушкой и прокалкой полученной композиции с ультрастабилизацией цеолита в составе катализатора. Недостатком указанного способа является невысокий отбор легких олефинов и недостаточно высокие октановые числа бензина крекинга, получаемого на данном катализаторе.
Целью настоящего изобретения является способ получения катализатора крекинга нефтяных фракций, обеспечивающего высокий выход олефинов C2-C4 и высокооктанового бензина.
Предлагаемый способ приготовления катализатора для крекинга нефтяных фракций включает проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора. Ультрастабилизацию цеолита проводят трижды: первую и вторую - на стадиях приготовления цеолита до смешения с компонентами матрицы, а третью ультрастабилизацию цеолита проводят в составе композиции катализатора, ионные обмены на катионы редкоземельных элементов и аммония проводят четырежды для получения ультрастабильного цеолита Y с содержанием оксида натрия не более 0,6 мас.%, оксидов редкоземельных элементов от 0,5 до 5,5 мас.% и содержания оксидов редкоземельных элементов в катализаторе от 0,05 до 1,1 мас.%.
Ультрастабильный цеолит Y представляет собой порошок белого цвета с размером частиц 0,2-0,8 микрон. Решеточный модуль цеолита составляет от 6,0 до 10,0. Цеолит используется в РЗЭ-Н-форме, содержание редкоземельных элементов составляет от 0,5 до 5,5 мас.% в пересчете на оксиды редкоземельных элементов, содержание оксида натрия должно составлять менее 0,6 мас.%.
Процесс приготовления ультрастабильного цеолита состоит из следующих стадий:
- ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония и в диапазоне от 1:1 до 1:1,5;
- фильтрация и промывка цеолита;
- второй ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония и в диапазоне от 1:1,5 до 1:2,0;
- ультрастабилизация цеолита в среде водяного пара с достижением решеточного модуля цеолита в диапазоне от 5,0 до 6,0;
- третий ионный обмен катионов натрия на катионы редкоземельных элементов при соотношении г-экв. натрия и редкоземельных элементов в диапазоне от 1:0,05 до 1:0,3 для обеспечения содержания редкоземельных элементов в цеолите от 0,5 до 5,5 мас.%;
- вторая ультрастабилизация цеолита в среде водяного пара с достижением решеточного модуля цеолита в диапазоне от 6,5 до 7,5;
- четвертый ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония в диапазоне от 1:2,0 до 1:4,0 с достижением остаточного содержания натрия в цеолите менее 0,6 мас.%.
Способ приготовления катализатора заключается в следующем. Бентонитовую глину подвергают обработке азотнокислым аммонием по методу ионного обмена для снижения содержания оксида натрия. После обработки остаточное содержание оксида натрия в глине менее 0,2 мас.%. Суспензию гидроксида алюминия обрабатывают концентрированной азотной кислотой. Затем смешивают суспензии бентонитовой глины и гидроксида алюминия и аморфного алюмосиликата. Суспензию ультрастабильного цеолита Y добавляют в приготовленную композицию бентонитовая глина-гидроксид алюминия-аморфный алюмосиликат. Смесь фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Полученный катализатор высушивают и прокаливают в среде водяного пара при температурах 680-740°C для третьей ультрастабилизации цеолита в составе катализаторной композиции. Решеточный модуль цеолита составляет от 8,0 до 12,0.
Условия реакции для оценки микроактивности образцов катализатора следующие: температура 536°C, соотношение катализатор/сырье 7,0, весовая скорость подачи сырья 17,5 ч-1, время подачи сырья 30 с. Условия испытаний соответствуют ASTM D-3907. Свойства вакуумного газойля, используемого как сырье, приведены в таблице 1.
Результаты испытаний описываемых катализаторов в соответствии с методом ASTM D-3907 приведены в таблице 2. Для иллюстрации изобретения приведены следующие примеры.
Таблица 1 | |
Характеристика вакуумного газойля | |
Показатель | Значение |
Плотность при 20°C, кг/м3 | 894,6 |
Фракционный состав, °C: | |
Температура начала кипения | 294,0 |
10% перегоняется при температуре | 350,0 |
30% перегоняется при температуре | 384,0 |
50% перегоняется при температуре | 409,0 |
70% перегоняется при температуре | 434,0 |
90% перегоняется при температуре | 491,0 |
96% перегоняется при температуре | 512,0 |
Температура конца кипения | 520,0 |
Среднеобъемная температура кипения, °C | 400,0 |
Характеристический фактор | 11,15 |
Средняя молекулярная масса | 347,0 |
Содержание серы, мас.% | 0,36 |
Коксуемость, мас.% | 0,08 |
Пример 1 (по прототипу).
Приготовление ультрастабильного цеолита.
Проводят ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв. аммония и натрия 1:1;
- проводят фильтрацию и промывку цеолита;
- проводят второй ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония 1:2,0;
- проводят ультрастабилизацию цеолита в среде водяного пара с достижением решеточного модуля цеолита 5,8;
- проводят третий ионный обмен катионов натрия на катионы редкоземельных элементов при соотношении г-экв. редкоземельных элементов и натрия 1,5 для обеспечения содержания редкоземельных элементов в цеолите от 9,1 мас.%, остаточное содержание натрия в цеолите составляет 1,8 мас.%;
Способ приготовления катализатора заключается в следующем. Бентонитовую глину подвергают обработке азотнокислым аммонием по методу ионного обмена для снижения содержания оксида натрия. После обработки остаточное содержание оксида натрия в глине менее 0,2 мас.%. Суспензию гидроксида алюминия обрабатывают концентрированной азотной кислотой. Затем смешивают суспензии бентонитовой глины и гидроксида алюминия и аморфного алюмосиликата. Суспензию ультрастабильного цеолита Y добавляют в приготовленную композицию бентонитовая глина-гидроксид алюминия-аморфный алюмосиликат. Смесь фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Полученный катализатор высушивают и прокаливают в среде водяного пара при температуре 710°C для ультрастабилизации цеолита в составе катализаторной композиции. Решеточный модуль цеолита составляет от 6,5. Содержание редкоземельных элементов в катализаторе составляет 1,94% мас.
Пример 2 (характеризует предлагаемый способ приготовления)
Приготовление ультрастабильного цеолита.
Проводят ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв. аммония и натрия 1:1,5;
- проводят фильтрацию и промывку цеолита;
- проводят второй ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония 1:2,0;
- проводят ультрастабилизацию цеолита в среде водяного пара с достижением решеточного модуля цеолита 6,0;
- проводят третий ионный обмен катионов натрия на катионы редкоземельных элементов при соотношении г-экв. натрия и редкоземельных элементов 1:0,12 для обеспечения содержания редкоземельных элементов в цеолите 1,0 мас.%;
- проводят вторую ультрастабилизацию цеолита в среде водяного пара с достижением решеточного модуля цеолита 7,5;
- четвертый ионный обмен катионов натрия на катионы аммония при соотношении г-экв. натрия и аммония 1:2,0 с достижением остаточного содержания натрия в цеолите 0,5 мас.%.
Приготовление катализатора проводят по примеру 1, отличие заключается в температуре ультрастабилизации цеолита в составе матрицы катализатора, которую проводят при температуре 720°C. Решеточный модуль цеолита составляет 10,0. Содержание редкоземельных элементов в катализаторе составляет 0,05 мас.%.
Пример 3 (характеризует предлагаемый способ приготовления)
Приготовление катализатора проводят как в примере 2. Отличие заключается в том, что второй ионный обмен катионов натрия в цеолите на катионы аммония проводят при соотношении г-экв. натрия и аммония 1:1,0. Первую ультрастабилизацию цеолита в среде водяного пара проводят с достижением решеточного модуля цеолита 7,5. Третий ионный обмен катионов натрия на катионы редкоземельных элементов проводят при соотношении г-экв. натрия и редкоземельных элементов 1:0,3 для обеспечения содержания редкоземельных элементов в цеолите 3,0 мас.%. Четвертый ионный обмен катионов натрия на катионы аммония проводят при соотношении г-экв. натрия и аммония 1:2,0 с достижением остаточного содержания натрия в цеолите 0,45 мас.%. Решеточный модуль цеолита составляет 11,0. Содержание редкоземельных элементов в катализаторе составляет 0,17 мас.%.
Пример 4 (характеризует предлагаемый способ приготовления)
Приготовление катализатора проводят как в примере 2. Отличие заключается в том, что второй ионный обмен катионов натрия в цеолите на катионы аммония проводят при соотношении г-экв. натрия и аммония 1:1,5. Первую ультрастабилизацию цеолита в среде водяного пара проводят с достижением решеточного модуля цеолита 8,5. Третий ионный обмен катионов натрия на катионы редкоземельных элементов проводят при соотношении г-экв. натрия и редкоземельных элементов 1:0,53 для обеспечения содержания редкоземельных элементов в цеолите 5,5 мас.%. Четвертый ионный обмен катионов натрия на катионы аммония проводят при соотношении г-экв. натрия и аммония 1:2,0 с достижением остаточного содержания натрия в цеолите 0,40 мас.%. Решеточный модуль цеолита составляет 10,0. Содержание редкоземельных элементов в катализаторе составляет 1,10 мас.%.
Таблица 2 | ||||||||
Каталитические свойства образцов катализаторов (мас.%) | ||||||||
№ примера | Na2O в катализаторе | РЗЭ2O3 в катализаторе | газ | бензин | легкий газойль | тяжелый газойль | кокс | сумма олефинов C2-C 4 |
1 | 0,42 | 1,94 | 16,0 | 49,5 | 15,8 | 6,5 | 6,2 | 12,0 |
1 | 0,17 | 0,05 | 18,5 | 49,7 | 15,4 | 5,3 | 5,2 | 14,5 |
3 | 0,12 | 0,17 | 17,8 | 49,6 | 14,7 | 5,0 | 5,3 | 13,8 |
4 | 0,11 | 1,10 | 16,2 | 49,9 | 17,4 | 6,0 | 5,8 | 13,3 |
Приведенные данные показывают, что при уменьшении содержания редкоземельных элементов в катализаторе увеличивается выход олефинов C2 -C4 с 12,0 мас.% (по протопипу, содержание редкоземельных элементов в катализаторе 1,8% мас.) до 14,5 мас.% при низком содержании редкоземельных элементов в катализаторе.
Класс B01J37/10 в присутствии воды, например пара
Класс B01J29/08 типа фожазитов, например типа х или у