электролизер для производства алюминия

Классы МПК:C25C3/08 конструктивные элементы электролизера, например днища, стенки, катоды
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью "Легкие металлы" (RU)
Приоритеты:
подача заявки:
2012-12-18
публикация патента:

Изобретение относится к электролизерам для получения алюминия. На поверхности подины размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45°-90° к плоскости подины, перпендикулярно и/или под углом 45°-90° к продольной оси катодных стержней, полностью или частично препятствующие протеканию вдоль подины горизонтальных составляющих катодного тока в слое алюминия. Электролизер может работать с расходуемыми или нерасходуемыми -«инертными» анодами. Обеспечивается уменьшение горизонтальных составляющих токов в слое расплава, особенно в алюминиевой части катода, равномерное распределение тока, уменьшение межполюсного расстояния (МПР) и, следовательно, уменьшение расхода электроэнергии на получение алюминия и/или увеличение выхода по току. 14 з.п. ф-лы, 5 ил.

электролизер для производства алюминия, патент № 2509830 электролизер для производства алюминия, патент № 2509830 электролизер для производства алюминия, патент № 2509830 электролизер для производства алюминия, патент № 2509830 электролизер для производства алюминия, патент № 2509830

Формула изобретения

1. Электролизер для производства алюминия, включающий катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что на поверхности подины и/или в пространстве между анодом и катодом под каждым анодом размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры, выполненые из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45°-90° к плоскости подины и перпендикулярно и/или под углом 45°-90° к продольной оси катодных стержней.

2. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры имеют одинаковую и/или неодинаковую высоту в зависимости от их координатного расположения на подине и ниже и/или выше уровня металла, и/или на границе металл-электролит.

3. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены с возможностью перемещения и/или замены, при необходимости.

4. Электролизер по пп.1-3, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры приклеены к катоду.

5. Электролизер по пп.1-4, отличающийся тем, что смачиваемые алюминием открытопористые ячеистые структуры имеют анизотропную проводимость, большую по оси анод-катод и меньшую в перпендикулярном направлении.

6. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры изготовлены из углеродных блоков, в частности из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния и/или материала типа ANAPLAST.

7. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры покрыты или пропитаны веществом, содержащим, например, диборид титана, обеспечивающим смачивание алюминием.

8. Электролизер по п.1, отличающийся тем, что внешние поверхности перегородки и/или решетки, и/или смачиваемой алюминием открытопористой ячеистой структуры предварительно обработаны/пропитаны защитными ингибиторными веществами.

9. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры перед размещением в пространстве межполюсного зазора (МПЗ) обтягивают в вакуумную упаковку из алюминиевой фольги и подогревают до температуры, наиболее близкой к температуре электролиза, но меньшей, чем температура плавления катодного металла, затем перегородки и/или решетки помещают в пространство межполюсного зазора (МПЗ).

10. Электролизер по п.1, отличающийся тем, что под каждым анодом устанавливают от 1 и более перегородок и/или решеток, и/или смачиваемых алюминием открытопористых ячеистых структур, при этом расстояние между перегородками и/или решетками обратно пропорционально их количеству, а размер пор смачиваемых алюминием открытопористых ячеистых структур обратно пропорционален количеству пор на единицу площади катода.

11. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры могут быть выполнены с любой формой, например в виде параллелепипеда, призмы, куба или гексагональной, ортогональной, полусферической, цилиндрической форме.

12. Электролизер по п.1, отличающийся тем, что перегородка и/или решетка, и/или смачиваемая алюминием открытопористая ячеистая структура выполнены с возможностью захватывания по краям кронштейнами, изготовленными из неэлектропроводного материала, стойкого в электролите, и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, и с возможностью перемещения в вертикальной, и/или в горизонтальной плоскости.

13. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры с анизотропной проводимостью, большей по оси анод-катод и меньшей в перпендикулярном направлении, изготовлены главным образом из оксида алюминия/глинозема, например высокоглиноземистого неформованного бетона и/или плит, и/или керамобетона.

14. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры расположены на дополнительном слое открытопористой ячеистой структуры.

15. Электролизер по п.1, отличающийся тем, что на поверхности подины по продольной оси электролизера и/или вдоль проекции периметра анода на поверхность катода выполнено одно или несколько углублений для дренажа и эвакуации металла из ванны.

Описание изобретения к патенту

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к конструкции электролизеров для получения алюминия.

Известен электролизер [1], содержащий катодное и анодное устройства. Катодное устройство содержит ванну с угольной подиной, выложенную из угольных блоков с вмонтированными токоподводами, заключенными в металлический кожух. Между металлическим кожухом и угольными блоками размещены огнеупорные и теплоизоляционные материалы. Анодное устройство содержит угольные аноды, соединенные с анодной шиной. Аноды размещены в верхней части ванны и погружены в расплавленный электролит.

Недостатком известной конструкции электролизера является то, что разработанные для нее технологии характеризуются весьма высоким удельным расходом энергии W, определяемым уравнением

электролизер для производства алюминия, патент № 2509830 ,

где V - напряжение на ванне, В; электролизер для производства алюминия, патент № 2509830 - выход по току,

k - электрохимический эквивалент [кг/кА·ч].

Обычно в технологиях получения алюминия W=13-15 кВт·ч/кг металла. Однако этот расход энергии приблизительно в 2 раза больше, чем предсказываемый теоретически. Для этого есть две причины:

1. В напряжении V большую часть занимает омическое падение напряжения в электролите, определяемое величиной межэлектродного (межполюсного) зазора (МПЗ). Обычно это расстояние составляет около 5 см.

2. Выход по току электролизер для производства алюминия, патент № 2509830 снижается при резком увеличении взаимодействия (так называемое «обратное взаимодействие») анодных продуктов (углекислого газа) и катодных продуктов (растворенного алюминия) при увеличении магнитогидродинамического (МГД) перемешивания (циркуляции) металла и электролита (МГД циркуляция расплава увеличивается при уменьшении МПЗ, как результат увеличения сил взаимодействия горизонтальных составляющих тока в расплаве и магнитного поля).

Таким образом, одними из важнейших недостатков вышеуказанной конструкции являются относительно высокое омическое сопротивление МПЗ и высокий расход энергии.

Известен электролизер для производства алюминия [2] (фиг.1), состоящий из анодного токоподвода, угольного анода, угольного катода с расположенными под анодом дополнительными элементами «грибами», сделанными из диборида титана, изоляции, электролита, жидкого алюминия, блюмсов. Конструкция служит для уменьшения МПЗ и, тем самым, для снижения напряжения V и удельного расхода энергии.

Недостатками этой конструкции электролизера являются малая термомеханическая и химическая стойкость «грибов», сделанных из диборида титана, особенно на границах металл-электролит, сложность прикрепления «грибов» к подине и невозможность осуществления такого прикрепления в ныне действующих электролизерах, малая площадь контакта «гриба» с угольной подиной, а также относительно высокая стоимость и невозможность оперативного удаления «грибов» из межэлектродного зазора при необходимости, например, опускания анода на катод.

Известен электролизер для производства алюминия, принятый за прототип [3], включающий катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что на угольной подине под каждым из анодов расположены тумбы с более высокой удельной электропроводностью, чем электролит, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность тумбы выступает выше уровня катодного алюминия, а тумбы выполнены с возможностью перемещения и/или замены при необходимости.

Недостатками известной конструкции электролизера являются: относительно большой объем пространства в МПЗ, занимаемый тумбами, вес и стоимость тумб, сложности перемещения и/или замены тумб при необходимости. В случае необходимости использования утяжелителей, расположенных внутри тумбы, например чугунной «гири» или заливки, это может снижать надежность конструкции вследствие разности коэффициентов термического расширения материалов, а также проникновения электролита через поры тумбы к материалу утяжелителя, приводя к его преждевременной коррозии и загрязнению катодного металла. Затруднительна возможность автоматического регулирования вертикального перемещения тумбы при изменении толщины слоя катодного металла. Тумбы недостаточно уменьшают горизонтальные составляющие катодного тока и МГД перемешивание расплава.

Задача изобретения - снижение удельного расхода энергии за счет уменьшения омического сопротивления и падения напряжения в МПЗ, повышения выхода по току вследствие уменьшения горизонтальных составляющих катодного электрического тока в расплаве, увеличения гидродинамического сопротивления для движения расплава у границы алюминий-электролит, уменьшения магнитогидродинамического (МГД) перемешивания расплава и «обратных» реакций металла с анодными газами, а также удобство расположения дополнительных элементов в МПЗ на подине и возможность их оперативного и автоматизированного перемещения и/или удаления из межэлектродного зазора (МПЗ) при необходимости, например, опускания анода на катод, и уменьшение стоимости конструкции.

Технический результат заключается в создании конструкции алюминиевого электролизера, включающего катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, в котором, согласно предлагаемому решению, на поверхности подины и/или в пространстве между анодом и катодом, под каждым из анодов, размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры, с анизотропной проводимостью, большей по оси анод-катод и меньшей в перпендикулярном направлении, из материала менее электропроводного, чем алюминий, перпендикулярно и/или под углом от ±45° до ±90° к плоскости подины, перпендикулярно и/или под углом от ±45° до ±90° к продольной оси катодных стержней, уменьшающие горизонтальные составляющие катодного тока вдоль подины в слое расплава. Вследствие демпфирования горизонтальных токов в расплаве уменьшается МГД циркуляция и возможно уменьшить МПЗ между анодом и катодом, т.е. уменьшить удельный расход энергии и/или увеличить выход по току.

Изобретение дополняют частные отличительные признаки, направленные также на решение поставленной задачи.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры имеют высоту одинаковую и/или неодинаковую в зависимости от их места расположения на подине, а также ниже и/или выше уровня металла, или на границе металл-электролит, определяемую с помощью соответствующего критерия оптимальности распределения электрических потенциалов и токов, т.е. в зависимости от конкретной цели, например уменьшение межполюсного расстояния (МПР), уменьшение энергозатрат и/или увеличение выхода по току и т.п.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены с возможностью перемещения и/или замены при необходимости.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры приклеены к катоду.

Смачиваемые алюминием открытопористые ячеистые структуры имеют анизотропную проводимость больше по оси анод-катод и меньше в перпендикулярном направлении.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры изготовлены из углеродных блоков, в частности из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния и/или материала типа ANAPLAST.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры покрыты или пропитаны веществом, содержащим, например, диборид титана, обеспечивающим смачивание алюминием.

Внешние поверхности перегородки и/или решетки, и/или смачиваемой алюминием открытопористой ячеистой структуры предварительно обработаны/пропитаны защитными ингибиторными веществами, защищающими от окисления.

Перегородки и/или решетки, перед тем как разместить в пространство МПЗ, обтягивают в вакуумную упаковку из алюминиевой фольги и подогревают до температуры как можно ближе к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем перегородки и/или решетки помещают в пространство МПЗ.

Под каждым анодом устанавливают от 1 и более перегородок и/или решеток, расстояние между перегородками и/или решетками обратно пропорционально их количеству, а размер пор смачиваемых алюминием открытопористых ячеистых структур обратно пропорционален количеству пор на единицу площади катода.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры могут быть различной формы, например параллелепипед, призма, куб, гексагональной, ортогональной, полусферической, цилиндрической и т.д., но симметрия и унификация перегородок и/или решеток может учитываться для оптимальности конструкции и процесса электролиза по критериям уменьшения удельных затрат энергии и/или увеличения выхода по току.

Перегородка и/или решетка, и/или смачиваемая алюминием открытопористая ячеистая структура может захватываться по краям кронштейнами, изготовленными из неэлектропроводного материала, стойкого в электролите, и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, с возможностью перемещения вертикально и/или в горизонтальной плоскости, при необходимости.

Сущность изобретения поясняется эскизами (фиг.2-5).

Электролизер содержит угольный анод с анодным токоподводом 1, угольную подину (катод) 2. Нижняя поверхность угольного анода погружена в электролит 3. Внутри электролизера выложена футеровка 4. Электролизер снабжен традиционным устройством для подачи сырья (глинозем, фторсоли) и отвода анодных газов 5, устройством для подвода тока 6 к катоду 2. В межполюсном зазоре (МПЗ) расположены перегородки и/или решетки 7, и/или смачиваемые алюминием открытопористые структуры 8. Верхняя часть перегородки и/или решетки 7 может находиться в электролите 3, а нижняя часть находится в катодном металле (жидком алюминии) 9.

Монтаж алюминиевого электролизера осуществляется следующим образом.

Перегородки и/или решетки 7, и/или смачиваемые алюминием открытопористые ячеистые структуры 8 могут быть покрыты или пропитаны веществом, содержащим, например, диборид титана, обеспечивающим смачивание алюминием. Смачиваемые алюминием открытопористые ячеистые структуры 8 приклеивают к подине. Перегородки и/или решетки 7, и/или смачиваемые алюминием открытопористые ячеистые структуры 8 перед тем, как разместить в пространство МПЗ, могут быть, при необходимости, обтянуты в вакуумную упаковку из алюминиевой фольги с целью закрытия поверхностных пор, защиты от окисления на воздухе, улучшения теплопередачи и подогреты до температуры, как можно близко к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем перегородки и/или решетки 7 помещают в пространство МПЗ.

Для электролизеров с обожженными анодами установка и/или замена перегородки и/или решетки 7, при необходимости, осуществляется непосредственно под обожженными анодами 1 во время замены соответствующего анодного блока, отключение ванны от питания при этом не требуется. Для электролизеров с самообжигающимися анодами Содерберга установка перегородки и/или решетки 7 осуществляется также непосредственно под анод при предварительном поднятии анода 1, при этом ванна может быть отключена от источника питания током. В обоих случаях в местах установки перегородки и/или решетки 7 осуществляется очистка угольной подины 2 от скопившегося осадка.

Для перемещения перегородка и/или решетка 7 захватывается по краям кронштейнами 10, изготовленными из неэлектропроводного материала, стойкого в электролите и катодном металле и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, с возможностью перемещения перегородки и/или решетки 7 вертикально и/или частично в горизонтальной плоскости, при необходимости. Кронштейн 10 прикреплен к перемещаемой тяге 11, которая может быть выполнена из обычных конструкционных материалов.

При этом происходит улучшение следующих ТЭП электролиза: уменьшение удельного расхода энергии, увеличение выхода по току.

ЛИТЕРАТУРА

1. Х.Чанг, В.де Нора и Дж.А.Секхар «Материалы, используемые в производстве алюминия методом Эру-Холла». - Изд.Красноярск. Гос.Ун-т, Красноярск, 1998.

2. J.R.Rayne: US Patent, 4.405.433, April 1981.

3. Патент № 111540. - Электролизер для производства алюминия / Попов Ю.Н., Поляков П.В., Островский И.В. Приоритет от 30.06.2011.

Класс C25C3/08 конструктивные элементы электролизера, например днища, стенки, катоды

катод для ячеек электролизера -  патент 2529432 (27.09.2014)
электролизер для производства алюминия -  патент 2518029 (10.06.2014)
способ определения степени износа карбидокремниевых блоков для боковой футеровки кожуха алюминиевых электролизеров -  патент 2516416 (20.05.2014)
способ изготовления комбинированных подовых блоков -  патент 2510822 (10.04.2014)
катодная секция алюминиевого электролизера -  патент 2510818 (10.04.2014)
электролизер для производства алюминия -  патент 2499085 (20.11.2013)
композиционные материалы для смачиваемых катодов и их использование при производстве алюминия -  патент 2487956 (20.07.2013)
катодное устройство электролизера для получения алюминия и способ его ремонта -  патент 2483142 (27.05.2013)
катодное устройство алюминиевого электролизера с рельефной подиной -  патент 2482224 (20.05.2013)
способ производства металлов электролизом расплавленных солей -  патент 2471892 (10.01.2013)
Наверх