сплав для постоянных магнитов

Классы МПК:C22C38/00 Сплавы черных металлов, например легированные стали
H01F1/032 содержащие магнитно-твердые материалы
C22C30/00 Сплавы, содержащие менее 50% по массе каждого компонента
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Научно-производственное объединение "Магнетон" (RU)
Приоритеты:
подача заявки:
2012-09-03
публикация патента:

Изобретение относится к области металлургии, в частности к сплавам для постоянных магнитов. Сплав для постоянных магнитов содержит, масс.%: кобальт 34,5-35,5, никель 14,0-14,5, медь 3,8-4,2, алюминий 7,0-7,5, титан 5,0-5,5, сера 0,15-0,25, олово 0,1-0,2, гафний 1,0-2,0, железо - остальное. Сплав характеризуется повышенными магнитными характеристиками и низким температурным коэффициентом индукции. 1 табл.

Формула изобретения

Сплав для постоянных магнитов, содержащий кобальт, никель, алюминий, медь, титан, серу и железо, отличающийся тем, что он дополнительно содержит олово и гафний при следующем соотношении элементов, мас.%:

Кобальт34,5-35,5
Никель14,0-14,5
Медь3,8-4,2
Алюминий7,0-7,5
Титан5,0-5,5
Сера0,15-0,25
Олово0,1-0,2
Гафний1,0-2,0
ЖелезоОстальное

Описание изобретения к патенту

Изобретение относится к области металлургии, в частности к магнитотвердым сплавам на основе системы Fe-Co-Ni-Al-Cu-Ti, используемым для производства постоянных магнитов с монокристаллической структурой.

Известен магнитотвердый сплав, по ГОСТ 17809-72, содержащий, масс.%:

Кобальт34,5-35,5
Никель13,5-14,5
Медь2,5-3,0
Алюминий7,0-7,5
Титан5,0-5,5
Железоостальное

Недостатком этого сплава является невысокий уровень коэрцитивной силы (НСВ) 110-120 кА/м и магнитной энергии (ВН)МАХ 80-88 кДж/м3 . С другой стороны, его температурный коэффициент магнитной индукции (ТКИ) составляет - 0,01%/°С, что достигается не за счет легирования термостабильными добавками, а за счет более совершенной монокристаллической микроструктуры, не искаженной тяжелыми металлами.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому эффекту является сплав на основе системы Fe-Co-Ni-Al-Cu-Ti следующего состава, масс.% (патент Р.Ф. № 1772211):

Кобальт34,5-35,5
Никель14,0-14,5
Алюминий6,8-7,2
Медь3,3-3,7
Титан4,8-5,2
Ниобий0,9-1,1
Сера0,2-0,5
Углерод0,02-0,03
Марганец0,2-0,4
Кремний0,1-0,2
Гафний0,4-0,9
Железоостальное

Недостаток известного сплава - при высоких магнитных параметрах (коэрцитивная сила (НСВ ) 134-140 кА/м, магнитная энергия (ВН)МАХ 79,6-91,8 кДж/м3, остаточная магнитная индукция (Br) 1,02-1,09 Тл) он имеет высокий температурный коэффициент магнитной индукции (ТКИ) до - 0,03%/°С, что приводит к значительному падению реальной магнитной индукции (до 0,99-1,06 Тл) при рабочих температурах выше 100°С.

Задачей предлагаемого изобретения является повышение основных магнитных (Br, HCB и (ВН) MAX) параметров и главное - снижение температурного коэффициента магнитной индукции. Поставленная задача решается за счет введения от 1,0 до 2,0% гафния, образующего в сплаве термостабильные фазы, с одновременным введением от 0,1 до 0,2% олова, позволяющего компенсировать вредное влияние большего количества гафния на совершенство монокристаллической структуры.

При этом, за счет отказа от введения добавок Mn - С и Mb - S, содержащих атомы пяти-, шести-, и семивалентных элементов удается значительно повысить качество микроструктуры монокристаллов данного сплава и, как следствие, значительно уменьшить температурный коэффициент индукции (ТКИ). Кроме того, уменьшение ТКИ происходит и за счет введения в сплав значительного количества Hf (до 2%).

Положительное влияние добавки гафния в присутствии олова на магнитные и эксплуатационные свойства сплава заключаются в том, что гафний делает монокристаллическую структуру даже в отсутствии кремния максимально совершенной за счет полного протекания высокоэрцитивного распада с образованием температурностабильных магнитных фаз. Введение олова (вместо кремния) позволяет увеличить содержания гафния в сплаве до 2% без потери основных магнитных параметров (Br, HCB, (ВН)max), поскольку кремний в небольших количествах (до 0,2%) способен компенсировать отрицательное влияние не более 0,9% гафния, а при увеличении содержания кремния в сплаве резко падают основные магнитные характеристики (Br, HCB, (ВН)max).

Выбор граничных пределов дополнительно введенных в состав сплава олова и гафния обусловлен следующими факторами:

- гафний увеличивает склонность сплава к образованию монокристаллической структуры и к высокоэрцитивному распаду, с образованием термостабильных магнитных фаз (сплавы 2, 3, 4 таблицы);

- с другой стороны с ростом содержания тяжелых атомов гафния снижается интенсивность диффузионных процессов при затвердевании сплава, что увеличивает количество дефектов в структуре сплава и снижает магнитные параметры, особенно коэрцитивную силу (сплав 6 таблицы);

- введение более активных и подвижных атомов олова позволяет повысить интенсивность диффузионных процессов и тем самым регулировать отрицательное воздействие большого содержания гафния на магнитные свойства сплава. При этом сплав не должен содержать кремния с целью предотвращения образования силицида олова, являющегося паразитной парамагнитной фазой;

- при низком содержании олова (менее 0,1%), его концентрации не хватает для компенсирования вредного влияния больших концентраций гафния (сплав 1 таблицы);

- при содержании олова более 0,2% (сплав 2 таблицы), за счет значительного ускорения диффузионных процессов при затвердевании нарушается совершенство магнитной структуры сплава, и как следствие снижаются магнитные параметры магнитного сплава;

- при содержании олова 0,1-0,2% и низком содержании гафния (менее 1%, известный сплав) температурный коэффициент индукции увеличивается очень незначительно, и не достигается решение основной задачи изобретения;

- при содержании гафния более 2% (сплав 6 таблицы) происходит значительное снижение магнитных параметров сплава, особенно коэрцитивной силы в результате роста числа дефектов структуры.

Кроме того, в данном сплаве необходимо присутствие небольшого количества серы (до 0,25%), для улучшения обрабатываемости (шлифуемости) магнитов. В известном сплаве сера в количестве до 0,5% вводится и для улучшения обрабатываемости и для повышения активности ниобия.

Содержание остальных элементов (Со, Mi, Ti, Al, Cu) являются стандартными для литых монокристаллических сплавов.

Содержание углерода (до 0,02%), снижает только примесное состояние Fe, Co, Ni и не служит для повышения активности атомов Mn, как в известном сплаве и является не магнитообразующей примесью.

Для получения магнитов с монокристаллической структурой известный и предлагаемый сплавы выплавляли в вакуумной индукционной печи ИСВ - 0,016 в тигле из оксида алюминия. Порядок плавки был следующий: в тигель печи загружали железо, кобальт, никель. В дозатор загружали медь, титан, сернистое железо, алюминий, олово и гафний. Производили вакуумирование плавильной камеры печи до остаточного давления не более 5×10-3 мм рт.ст., затем включали нагрев и производили дегазацию (основных элементов загруженных в тигель) до полного прекращения падения разреженности среды в камере печи. Запускали аргон высокой частоты с небольшим избыточным давлением. Расплавляли металл в тигле и производили дозирование из дозатора остальных элементов. Поднимали температуру до 1620-1650°С делали выдержку 20-40 секунд после чего расплав выливали в керамическую форму, где он затвердевал в виде равноосных отливок цилиндрической формы. В дальнейшем эти отливки использовали в качестве шихты для выращивания монокристаллов. Выращивание производили в высокочастотной установке Кристаллизатор-203 в атмосфере аргона. Выращенные монокристаллические заготовки подвергали механической обработке, для получения магнитов сплав для постоянных магнитов, патент № 2510422 20×20 мм и сплав для постоянных магнитов, патент № 2510422 10×15 мм. Подвергали их стандартной термомагнитной обработке: охлаждение с 1250°С до 760° со скоростью не менее 150-200°С/мин. и выдержка в изотермической ванне при 805±2°С в течении 12 минут в магнитном поле напряженностью не менее 240 кА/м, после чего следует отпуск: 640°С - 5 часов, 560°С - 20 часов.

Замер магнитных свойств производили на установке PERMAGRAPH С-300, путем снятия с магнитов кривой размагничивания.

Химический состав известного и предлагаемого сплавов, а также их магнитные и эксплуатационные характеристики приведены в таблице.

сплав для постоянных магнитов, патент № 2510422

Класс C22C38/00 Сплавы черных металлов, например легированные стали

способ производства оцинкованной полосы для последующего нанесения полимерного покрытия -  патент 2529323 (27.09.2014)
способ получения листа из неориентированной электротехнической стали -  патент 2529258 (27.09.2014)
термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
нержавеющая сталь с хорошей коррозионной стойкостью для топливного элемента и способ ее получения -  патент 2528520 (20.09.2014)
способ производства нетекстурированной электротехнической стали с высокой магнитной индукцией -  патент 2527827 (10.09.2014)
высокопрочный холоднокатаный стальной лист с превосходным сопротивлением усталости и способ его изготовления -  патент 2527571 (10.09.2014)
высокопрочный холоднокатаный лист с превосходной формуемостью и способ его изготовления -  патент 2527514 (10.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью, и способ его производства -  патент 2526345 (20.08.2014)

Класс H01F1/032 содержащие магнитно-твердые материалы

Класс C22C30/00 Сплавы, содержащие менее 50% по массе каждого компонента

способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-ti с эффектом памяти формы и сверхэластичностью, ориентированных вдоль [001] направления при деформации растяжением -  патент 2524888 (10.08.2014)
способ изготовления материала для дугогасительных и разрывных электрических контактов и материал -  патент 2522584 (20.07.2014)
сплав на основе никеля -  патент 2515794 (20.05.2014)
активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства -  патент 2508579 (27.02.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
жаропрочный хромоникелевый сплав с аустенитной структурой -  патент 2485200 (20.06.2013)
износостойкий сплав для высокотемпературных применений -  патент 2479658 (20.04.2013)
сплав -  патент 2475553 (20.02.2013)
Наверх