цифровой термометр
Классы МПК: | G01K7/32 с использованием изменения резонансной частоты кристаллов G01K3/02 показывающие среднее значение; показывающие суммарное значение |
Автор(ы): | Строев Владимир Михайлович (RU), Фесенко Александр Иванович (RU), Ищук Игорь Николаевич (RU) |
Патентообладатель(и): | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации (RU) |
Приоритеты: |
подача заявки:
2012-05-17 публикация патента:
27.03.2014 |
Изобретение относится к термометрии и предназначено для работы с термопреобразователями с частотным выходным сигналом. Заявлен цифровой термометр, содержащий термопреобразователь с частотным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, преобразователь код-частота (ПКЧ) и дополнительно введенное ПЗУ. Вычитающий вход реверсивного счетчика соединен с выходом ПКЧ, частотный вход которого соединен с выходом генератора прямоугольных импульсов, а суммирующий вход счетчика подключен к выходу термопреобразователя и синхровходу параллельного регистра. Выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Предлагаемое изобретение обеспечивает функциональное преобразование импульсной информации за счет использования частотно-импульсной следящей системы компенсационного типа, обеспечивающей непрерывное отказоустойчивое формирование результата в соответствии с температурной характеристикой термопреобразователя. Технический результат: повышение точности измерения температуры. 1 ил.
Формула изобретения
Цифровой термометр, содержащий термопреобразователь с частотным выходом, являющийся входом устройства, генератор прямоугольных импульсов, реверсивный счетчик, имеющий суммирующий вход с весовым коэффициентом k, параллельный регистр и преобразователь код-частота, причем кодовые входы преобразователя код-частота подключены к выходам параллельного регистра, синхровход которого соединен с суммирующим входом реверсивного счетчика, а информационные D входы параллельного регистра соединены с выходами реверсивного счетчика, частотный вход преобразователя код-частота подключен к выходу генератора прямоугольных импульсов, а выход соединен с вычитающим входом реверсивного счетчика, отличающийся тем, что он дополнительно снабжен постоянным запоминающим устройством, входы которого связаны с выходами параллельного регистра и кодовыми входами преобразователя код-частота, а выходы являются выходами устройства, при этом именно прямой суммирующий вход реверсивного счетчика и синхровход регистра подключены к выходу термопреобразователя, кроме того, именно прямой вычитающий вход реверсивного счетчика связан с выходом преобразователя код-частота, а именно инверсный синхровход параллельного регистра соединен с выходом термопреобразователя и суммирующим входом реверсивного счетчика.
Описание изобретения к патенту
Изобретение относится к термометрии и предназначено для работы с термопреобразователями с частотным выходным сигналом, у которых выходная частота F(t°) однозначно связана с температурой t° известной зависимостью, например . Изобретение может быть использовано при построении цифровых термометров, работающих с термопреобразователями, имеющими частотный выходной сигнал, например, пьезокварцевыми термопреобразователями.
Известно устройство для измерения температуры (пат. RU № 2328710, G01K 7/32, Цифровой термометр / Дунаев Е.С., Дунаев В.С., Муралев А.Б., заявл. 29.11.06; опубл. 10.07.08), содержащее первый термочувствительный пьезорезонатор, помещенный в защитную капсулу и включенный в частото-задающую цепь первого измерительного автогенератора, выход которого соединен с первым входом первого блока формирования разностной частоты, второй вход которого соединен с выходом опорного автогенератора, блок индикации, второй термочувствительный пьезорезонатор, помещенный в защитную капсулу и включенный в частотозадающую цепь второго измерительного автогенератора, выход которого соединен с первым входом второго блока формирования разностной частоты, второй вход второго блока формирования разностной частоты соединен с выходом опорного автогенератора, вычислительный блок, первый счетный вход которого соединен с выходом первого блока формирования разностной частоты, второй счетный вход вычислительного блока соединен с выходом второго блока формирования разностной частоты, третий - таймерный вход вычислительного блока соединен с выходом опорного автогенератора, а четвертый вход соединен с выходом ПЗУ, вход которого соединен с первым выходом вычислительного блока, второй выход которого, в свою очередь, соединен с входом блока индикации.
К недостаткам данного устройства следует отнести отсутствие следящего отказоустойчивого измерения температуры и усложнение структуры вычислительного устройства за счет введения вывода значений, измеренных температур из ПЗУ на индикатор через вычислительное устройство.
Известно также устройство (пат. № 2207529 Российская Федерация, МПК7 G01K 7/32. Цифровой термометр / Сафьянников Н.М., Буренева О.П., заявл. 10.06.02; опубл. 27.06.03, бюл. № 26), содержащее термопреобразователь с частотным выходом, первый и второй генераторы частот, реверсивный и суммирующий счетчики, три элемента И, триггер, блок индикации, преобразователи частоты в код и кода в частоту, регистр.
Недостатками этого устройства являются его повышенная сложность и, следовательно, пониженная надежность работы, а также низкая точность измерений и ограниченные функциональные возможности. Низкая точность измерений обусловлена отсутствием элементов коррекции или калибровки с учетом реальной характеристики, описывающей взаимосвязь температуры и выходной частоты F(t°) термопреобразователя. Ограниченные функциональные возможности обусловлены тем, что термометр предназначен лишь для узкого класса термопреобразователей с частотным выходом, у которых выходная частота F связана с температурой зависимостью .
Наиболее близким по технической сущности и достигаемому результату к заявляемому предполагаемому изобретению является цифровой термометр (пат. № 2212637 Российская Федерация, МПК7 G01K 7/32. Цифровой термометр / Сафьянников Н.М., Буренева О.И., Бондаренко П.Н. - № 2002119072; заявл. 15.07.02; опубл. 20.09.03, бюл. № 26), содержащий термопреобразователь с частотным выходом, генератор опорной частоты, два элемента И, два реверсивных счетчика, суммирующий счетчик, два регистра, триггер, два преобразователя код-частота и блок индикации, причем входы второго элемента И объединены соответственно первый с вычитающим входом реверсивного счетчика и выходом преобразователя кода в частоту, второй - с первым входом первого элемента И, с выходом триггера и с суммирующим по весовому коэффициенту n входом реверсивного счетчика, а входы триггера подключены соответственно установочный к выходу термопреобразователя, сбрасывающий - к выходу переноса суммирующего счетчика, соединенного счетным входом с выходом первого элемента И, второй вход которого объединен с выходом генератора опорной частоты и с частотными входами обоих преобразователей кода в частоту, при этом кодовый вход второго преобразователя кода в частоту подключен к выходу второго регистра и ко входу блока индикации, а выход - к вычитающему входу второго реверсивного счетчика, суммирующий вход которого соединен с выходом второго элемента И, а выход соединен с кодовым входом второго регистра, причем кодовый вход первого регистра соединен с выходом реверсивного счетчика, а выход - с кодовым входом преобразователя кода в частоту, прямые динамические входы записи регистров подключены к выходу триггера.
Недостатками данного устройства, принятого за прототип, являются его повышенная сложность и, следовательно, пониженная надежность работы, а также низкая точность измерений и ограниченные функциональные возможности. Низкая точность измерений обусловлена отсутствием элементов коррекции или калибровки с учетом реальной характеристики, описывающей взаимосвязь температуры и выходной частоты F(t°) термопреобразователя. Ограниченные функциональные возможности обусловлены, тем, что термометр предназначен лишь для узкого класса термопреобразователей с частотным выходом, у которых выходная частота F(t°) связана с температурой зависимостью
Техническая сущность предлагаемого изобретения состоит в преобразовании измеренного значения выходной частоты термопреобразователя, однозначно связанной с температурой, в значение температуры с помощью ПЗУ, в котором записаны коды температуры. Вид кодов температуры определяется техническим типом получателя информации. Так, при передаче информации о температуре на семисегментный индикатор в ПЗУ будут записаны семисегментные коды температуры и бит ее знака, передаваемые на индикатор через согласующее устройство. Измерение только выходной частоты термопреобразователя позволяет упростить схему, а использование ПЗУ позволяет корректировать взаимосвязь температуры и выходной частоты термопреобразователя под конкретный датчик.
Технический результат достигается тем, что цифровой термометр содержит термопреобразователь с частотным выходом, являющийся входом устройства, генератор прямоугольных импульсов, реверсивный счетчик, имеющий суммирующий вход с весовым коэффициентом k, параллельный регистр и преобразователь код-частота (ПКЧ), причем кодовые входы преобразователя ПКЧ подключены к выходам параллельного регистра, синхровход которого соединен с суммирующим входом реверсивного счетчика, а информационные D входы параллельного регистра соединены с выходами реверсивного счетчика, частотный вход преобразователя код-частота подключен к выходу генератора прямоугольных импульсов, а выход соединен с вычитающим входом реверсивного счетчика, также дополнительно снабжен ПЗУ, входы которого связаны с выходами параллельного регистра и кодовыми входами ПКЧ, а выходы являются выходами устройства, при этом именно прямой суммирующий вход реверсивного счетчика и синхровход регистра подключены к выходу термопреобразователя, кроме того именно прямой вычитающий вход реверсивного счетчика связан с выходом преобразователя код-частота, а именно инверсный синхровход параллельного регистра соединен с выходом термопреобразователя и суммирующим входом реверсивного счетчика.
Схема предлагаемого цифрового термометра представлена на фиг.1.
Цифровой термометр содержит термопреобразователь 1 с частотным выходом, генератор прямоугольных импульсов 2, преобразователь кода в частоту (ПКЧ) 3, реверсивный счетчик 4, имеющий суммирующий вход с весовым коэффициентов k, параллельный регистр 5, постоянное запоминающее устройство (ПЗУ) 6, причем выход термопреобразователя 1 соединен с суммирующим входом реверсивного счетчика 4 и инверсным, динамическим, синхровходом регистра 5, выходы которого подключены к соответствующим адресным входам ПЗУ 6 и кодовым входам преобразователя кода в частоту 3, вход f которого соединен с выходом генератора прямоугольных импульсов 2, выходы ПКЧ 3 соединен с вычитающим входом реверсивного счетчика 4, связанного выходами с входами D параллельного регистра 5, при этом входом цифрового термометра является термопреобразователь 1, а выходом - кодовые выходы ПЗУ разрядностью m.
Назначение блоков 1 6 понятно из их названий.
Цифровой термометр работает следующим образом.
Генератор прямоугольных импульсов 2 вырабатывает опорную импульсную последовательность с частотой F1, причем частота F1 должна быть много больше выходной частоты F(f°) термопреобразователя 1.
Пусть в начальный момент времени счетчик 4 находится в нулевом состоянии,
По фронту первого импульса с выхода термопреобразователя 1, поступающего на прямой динамический суммирующий вход реверсивного счетчика 4, счетчик увеличивает свое содержимое на k. По срезу первого импульса с выхода термопреобразователя 1 код числа k записывается в регистр 5. Импульсы ПКЧ 3 поступают на вычитающий вход счетчика 4.
Выходная частота Fp ПКЧ задается кодом числа к поступающим на его кодовые входы:
где NRG - входной код преобразователя кода в частоту 3, снимаемый с выхода регистра 5;
n - разрядность реверсивного счетчика 4, преобразователя кода в частоту 3 и регистра 5.
За время Т=1/F(t°) между срезами последовательности импульсов термопреобразователя (период повторения) на вычитающий вход счетчика 4 пройдут N_=N 1 импульсов ПКЧ:
По срезу следующего импульса термопреобразователя код числа N1=k-N1 с выходов счетчика 4 записывается в регистр 5.
Принцип действия цифрового термометра основан на модуляции широтно-импульсными сигналами термопреобразователя частотно-импульсной последовательности, функционально сформированной на основе опорной частоты, для выработки и автоматической компенсации с помощью запоминающей обратной связи сигнала рассогласования устройства в процессе измерения частоты термопреобразователя, что обеспечивает отслеживание изменений температуры при формировании результата.
Наличие в устройстве отрицательной обратной связи обеспечивает выход в режим установившегося динамического равновесия, характеризующийся равенством количества импульсов, приходящих на суммирующий N + и на вычитающий N-входы счетчика 4 в течение периода повторения импульсов термопреобразователя, т.е. N_=k.
Отсюда получаем, что в режиме установившегося динамического равновесия
Таким образом, значение NRG однозначно связано с температурой. Значение NRG преобразуется в значение температуры с помощью ПЗУ. Коды, записываемые в ПЗУ, получаются в ходе калибровки термометра: весь диапазон измеряемых температур представляется в виде последовательности необходимого числа фиксированных значений температуры; для каждого фиксированного значения температуры, регистрируемого эталонным измерителем, фиксируется значение NRG, после чего двоичный код температуры записывается в ПЗУ по адресу NRG. В результате выполнения калибровки достигается полное соответствие получаемых результатов измерения температуры температурной характеристике конкретного используемого термопреобразователя.
Калибровка может быть осуществлена под термопреобразователь с температурной характеристикой, отличной от температурной характеристики, описываемой выражением , что позволяет расширить функциональные возможности цифрового термометра.
Техническим результатом, достигаемым при использовании заявляемого предполагаемого изобретения, являются повышение точности измерения температуры, расширение функциональных возможностей, а также упрощение схемы термометра и, соответственно, повышение надежности его работы.
Класс G01K7/32 с использованием изменения резонансной частоты кристаллов
Класс G01K3/02 показывающие среднее значение; показывающие суммарное значение