способ определения концентрации и среднего размера частиц пыли
Классы МПК: | G01N21/94 выявление загрязнений, например пыли G01N15/02 определение размеров частиц или распределения их по размерам |
Автор(ы): | Семенов Владимир Владимирович (RU), Попов Евгений Константинович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU) |
Приоритеты: |
подача заявки:
2012-07-27 публикация патента:
27.03.2014 |
Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью. Далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала, из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучках общую концентрацию пыли и размер частиц пыли. Технический результат - повышение точности измерений среднего размера и концентрации частиц пыли. 2 ил.
Формула изобретения
Фотоэлектрический способ определения размеров и концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока на широкий и узкий, преобразование данных потоков в электрические сигналы, отличающийся тем, что используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью, далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучкам общую концентрацию пыли и размер частиц пыли.
Описание изобретения к патенту
Изобретение относится к измерительной технике.
Промышленная применимость изобретения заключается в определении общей концентрации и среднего размера частиц пыли и, в свою очередь, общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания рабочих.
Известен оптический пылемер (Пат. России № 2095792, кл. МПК G01N 21/85) для непрерывного измерения запыленности газов. Принцип работы устройства заключается в следующем: в оптическом пылемере первый излучатель расположенный перед рабочей камерой, формирует измерительный канал и оптически связан с фотоприемником через защитные окна рабочей камеры, второй излучатель, расположенный за рабочей камерой, формирует контрольный канал и оптически связан с фотоприемником, третий излучатель расположен внутри устройства за рабочей камерой и формирует дополнительный контрольный канал и оптически связан с фотоприемником через защитное окно. При поочередном снятии показаний со всех излучателей определяется уровень запыленности в измерительном канале и сравнивается с данными, полученными с контрольных каналов.
Недостатком этого устройства является отсутствие возможности определения среднего размера частиц.
Известен способ определения дисперсной среды (Шифрин К.С, Мороз Б.З., Сахаров А.Н. "Определение характеристик дисперсной среды по данным ее прозрачности" - ДАН СССР, 1971, т.199, № 3 с 581-598), на основе которого составлено регистрационное устройство для измерения методом флюктуации (Шифрин К.С "Введение в оптику океана", Санкт-Петербург: "Гидрометеоиздат", 1983 - с.220-227) выбранное в качестве прототипа.
На фиг.1 изображена блок-схема устройства, работающего по данному способу.
Принцип работы по указанному способу заключается в следующем. Параллельный пучок от источника света 1, промодулированный модулятором 2, проходит сквозь смотровые окна 3, 4 кюветы 4 с исследуемой средой и попадает на светоделительное зеркало 6, которое пропускает центральную часть пучка, а остальной свет посылает на фотоприемник 9; из прошедшего света диафрагмой 7 формируется узкий пучок, который поступает на фотоприемник 8. С фотоприемников сигналы поступают на блок 10, в котором происходит электрическое выравнивание и вычитание сигналов, затем разностный сигнал подается на усилитель 11 и далее на синхронный детектор 12, опорный сигнал на который поступает от фотодиода 13. Последний освещается светом, промодулированным модулятором 2. Спектр флюктуации регистрируется на записывающем блоке 14.
Недостатком указанного способа является низкая точность измерений среднего размера и концентрации частиц пыли.
Задачей предлагаемого изобретения является повышение точности измерений среднего размера и концентрации частиц пыли.
Поставленная задача решается тем, что фотоэлектрический способ определения размеров и концентрации частиц пыли, включающий преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока на широкий и узкий, преобразование данных потоков в электрические сигналы, электрическое вычитание этих сигналов, синхронное детектирование и регистрацию спектра флюктуации в записывающем блоке, для повышения точности измерений вводятся кроме вышеописанного измерительного канала дополнительный опорный канал, который заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного предприятия, зондируемый вторым световым пучком, далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучкам, общую концентрацию пыли и размер частиц пыли.
Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения концентрации, а так же определении среднего размера частиц пыли.
На фиг.2 изображена блок-схема устройства, работающего по данному способу.
Устройство содержит источник импульсного напряжения 1, последовательно соединенный с источником света 2, последовательно соединенный и оптически связанный со входом устройства разделения светового потока 3, первый выход которого последовательно соединен и оптически связан с защитным окном 4, защитным окном 5 измерительного канала 6; второй выход устройства разделения светового потока последовательно соединен и оптически связан с защитным окном 13 опорного канала 15, который заполнен очищенной от пыли газовой смесью, по своему составу аналогичной отходящим газам конкретного предприятия и защитным окном 14 опорного канала; защитное окно 5 оптически связано со светоразделительным зеркалом 7, пропускающим центральную часть светового пучка на диафрагму 8, формирующую узкий световой поток, поступающий на фотоприемник 9, который в свою очередь соединен с усилителем 10, последовательно соединенным с сумматором 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, а широкий световой пучок со светоразделительного зеркала 7 попадает на фотоприемник 11, который последовательно соединен с усилителем 12, последовательно соединенным с сумматором 22, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26; аналогично второе защитное окно 14 опорного канала 15 оптически связано со вторым светоразделительным зеркалом 16, пропускающим центральную часть светового пучка на диафрагму 17, формирующую узкий световой поток, поступающий на фотоприемник 18, который в свою очередь соединен с усилителем 19, последовательно соединенным с сумматором 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, а широкий световой пучок со светоразделительного зеркала 16 попадает на фотоприемник 20, который последовательно соединен с усилителем 21, последовательно соединенным с сумматором 22, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.
Работа данного устройства по предлагаемому способу основана на так называемом методе флюктуации. Измерение прозрачности позволяет определить оптическую толщину системы . Наблюдения показывают, что если частиц в пучке много, то прозрачность системы испытывает заметные флюктуации. Эти флюктуации вызваны случайными перемещениями частиц, при этом частицы по разному перекрывают друг друга. Во флюктуациях содержится ценная информация о свойствах изучаемой дисперсной системы. Дисперсия прозрачности, помимо зависит непосредственно от числа частиц в изучаемом объекте, так что одновременное измерение прозрачности и дисперсии среды дает нам метод определения как среднего размера, так и концентрации частиц.
При разделении светового потока, с помощью большего по площади пучка света мы определяем прозрачность системы, а по ней уже оптическую толщину системы, а с помощью сжатого, дисперсию среды; после вычитания и всех преобразований мы можем определить число частиц в пучке и их размеры по следующим формулам:
Формула (2) выражает закон Бугера-Ламберга, где I - интенсивность света, прошедшего сквозь дисперсную среду, I0 - интенсивность падающего пучка, - оптическая толщина системы. Основным является соотношение:
с помощью которого по измеренным дисперсии D и оптической толщине находим N - среднее число частиц в просвечиваемом объекте и, следовательно, - концентрацию частиц и so - средний поперечник ослабления света частицей, здесь ( ) - функция, связывающая дисперсию D с и N, значения которой приведены в (Шифрин К.С "Введение в оптику океана", Санкт-Петербург: «Гидрометеоиздат», 1983 - с 221).
Функция ( ) имеет следующие оценки:
Для определения среднего разброса полученных значений найдем коэффициент вариации интенсивности прошедшего пучка:
где s=so/S - относительная безразмерная площадь.
При малой оптической толщине системы коэффициент вариации равен:
В свою очередь при большой :
Поскольку при 0 нет взаимного затенения и также 0, а при дисперсия спадает медленнее, чем квадрат интенсивности и .
Используя оценку (5) найдем, что при любых :
Из формулы (6) видно, что при заданном надо стремиться иметь s=s0/S как можно больше, т.е. стараться работать с максимально узкими пучками.
Приведем теперь окончательные формулы, позволяющие определить средний поперечник ослабления света частицей s0 и концентрацию частиц через среднюю интенсивность прошедшего пучка I, дисперсию сигнала D и площадь сечения пучка S:
где l - момент случайной величины Y.
Работа устройства по данному способу осуществляется следующим образом: генератор функционально-импульсной развертки 1, являющийся источником импульсного напряжения, подает импульсное напряжение на источник светового излучения 2, оптически связанный со входом устройства разделения светового потока 3, основное назначение которого направить разделенные световые потоки в измерительный канал 6 и опорный канал 15.
Импульсное световое излучение проходит через окна 4, 5 измерительного канала 6 и ослабляется пылью по закону Бугера-Ламберта-Бера и поступает на светоразделительное зеркало 7, основной задачей которого является разделение пучка света на два, причем один из них максимально узкий по отношению к другому, такое разделение необходимо для одновременного измерения дисперсии и прозрачности среды, по большему пучку определяется прозрачность среды, а по сжатому в свою очередь дисперсия, больший пучок попадает на фотоприемник 11, преобразующий свет в электрический сигнал, затем этот сигнал поступает на усилитель 12 и затем на сумматор 22, в котором происходит электрическое вычитание сигналов измерительного и опорного каналов, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26, в свою очередь центральная часть светового пучка со светоразделительного зеркала 7 поступает на диафрагму 8, формирующую узкий световой поток, поступающий на фотоприемник 9, преобразующий световой поток в электрический сигнал, затем этот сигнал поступает на усилитель 10, затем сигнал поступает на сумматор 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.
Рассмотрим работу опорного канала 15. Импульсное световое излучение проходя через окна 13, 14 опорного канал 15 изменяется незначительно и поступает на светоразделительное зеркало 16, основной задачей которого является разделение пучка света на два, причем один из них максимально узкий по отношению к другому, такое разделение необходимо для одновременного измерения дисперсии и прозрачности среды, по большему пучку определяется прозрачность среды, а по сжатому в свою очередь дисперсия, больший пучок попадает на фотоприемник 20, преобразующий свет в электрический сигнал, затем этот сигнал поступает на усилитель 21 и затем на сумматор 22, в котором происходит электрическое вычитание сигналов измерительного и опорного каналов, который в свою очередь последовательно соединен с синхронным детектором 23, который также связан с источником импульсного напряжения 1 и микроконтроллером 26 в свою очередь центральная часть светового пучка со светоразделительного зеркала 16 поступает на диафрагму 17, формирующую узкий световой поток, поступающий на фотоприемник 18, преобразующий световой поток в электрический сигнал, затем этот сигнал поступает на усилитель 19, затем сигнал поступает на сумматор 24, который в свою очередь последовательно соединен с синхронным детектором 25, который также связан с источником импульсного напряжения 1 и микроконтроллером 26.
Таким образом, рассмотренный способ, в отличие от известных, позволяет получить более высокую точность измерения концентрации и размеров частиц за счет введения дополнительного опорного канала, позволяющего уменьшить уровень относительных ошибок при измерениях, что в свою очередь повышает точность измерения среднего размера и концентрации частиц пыли.
Класс G01N21/94 выявление загрязнений, например пыли
Класс G01N15/02 определение размеров частиц или распределения их по размерам