электрохимическое осаждение фуллереновой пленки на токопроводящих материалах
Классы МПК: | C25D9/06 на аноде B82Y40/00 Изготовление или обработка нано-структур C25D11/32 полупроводниковых материалов |
Патентообладатель(и): | Козеев Александр Алексеевич (RU) |
Приоритеты: |
подача заявки:
2012-10-18 публикация патента:
10.04.2014 |
Изобретение относится к электрохимии наноуглеродных кластеров, в частности к получению в электрохимическом процессе фуллереновой пленки, осажденной на токопроводящих материалах (металлах, графите). Фуллереновая пленка может быть использована в эндопротезировании, в радиоэлектронике и физике полупроводников. Осаждение пленки проводят на аноде из безводного раствора фуллерена в пиридин-ацетоновой смеси при соотношении пиридина к ацетону 1:4, температуре 20-30°C, разности потенциалов электродов 6,0-8,0 V, плотности тока 1,0-2,0 мА/ кв.дм и длительности процесса 30-60 мин. Получаемая пленка устойчива к действию разбавленных растворов кислот и щелочей. 8 з.п. ф-лы, 5 ил., 2 пр.
Формула изобретения
1. Способ получения фуллереновой пленки на токопроводящих материалах электрохимическим осаждением из раствора фуллерена, отличающийся тем, что осаждение пленки проводят на аноде из безводного раствора фуллерена в пиридин-ацетоновой смеси при соотношении пиридина к ацетону 1:4, температуре 20-30°C, разности потенциалов электродов 6,0-8,0 В, плотности тока 1,0-2,0 мА/ кв. дм и длительности процесса 30-60 мин.
2. Способ по п.1, отличающийся тем, что осаждение пленки проводят из безводного раствора фуллерена в пиридин-ацетоновой смеси, полученного растворением 1,0 г фуллерена С60 в 200 мл пиридина с последующим добавлением 800 мл ацетона.
3. Способ по п.1, отличающийся тем, что пиридин-ацетоновую смесь помещают в герметичную электролитическую ванну объемом 1,5-1,7 л.
4. Способ по п.1, отличающийся тем, что электроды очищают и обезжиривают трихлорэтиленом или другим растворителем, применяемым для этих целей в гальванических производствах, и погружают в электролитическую ванну с раствором фуллерена в пиридин-ацетоновой смеси.
5. Способ по п.1, отличающийся тем, что на поверхности анода происходит осаждение отрицательных ионов фуллерена, которое приводит к образованию фуллереновой пленки, а положительный пиридиний-ион разряжается на катоде до свободного пиридина, который возвращается в раствор электролита.
6. Способ по п.1, отличающийся тем, что процесс заканчивают при снижении тока процесса до 50-70% от первоначального значения из-за возрастающего электрического сопротивления образующейся пленки.
7. Способ по п.1, отличающийся тем, что осажденная на аноде фуллереновая пленка представляет собой растворимый в бензоле, в толуоле, орто-ксилоле продукт электрохимического осаждения фуллерена из пиридин-ацетонового растворов фуллерена.
8. Способ по п.1, отличающийся тем, что по окончании процесса образования фуллереновой пленки изделие вынимают из ванны, промывают дистиллированной водой и сушат.
9. Способ по п.1, отличающийся тем, что получают пленку золотисто-коричневатого цвета.
Описание изобретения к патенту
Настоящее изобретение относится к области электрохимии наноуглеродных кластеров и, в частности, к получению в электрохимическом процессе фуллереновой пленки на токопроводящих материалах: на металлических изделиях, а также на графите, из безводного раствора фуллерена в пиридин-ацетоновой смеси.
Уровень техники
Было обнаружено, что фуллерен образует с пиридином ионный комплекс (фуллерен-пиридиний) [C60]+ [C5H5N]-. При растворении фуллерена в пиридине происходит не простое физико-химическое растворение, а растворение, связанное с образованием ионного комплекса фуллерен-пиридиния:
При некотором допущении фуллерен-пиридиний можно рассматривать как аналог соединений, относящихся к классу N-илидов, которые являются биполярными ионами, содержащими положительно заряженный атом азота и отрицательно заряженный атом углерода. Примером такого илида является, например, флуоренил-пиридиний
http://www.xumuk.ru/bse/1196.html:
Образование комплекса фуллерен-пиридиния и объясняет, почему растворимость фуллерена в пиридине (порядка 10 мг/мл) на порядок больше, чем растворимость фуллерена в бензоле (порядка 1 мг/мл). Молекулярная масса комплекса фуллерен-пиридиния составляет 799 АЕМ (АЕМ - атомные единицы массы). Именно ион с такой массой обнаружен на масс-спектре образца фуллерена в пиридине (см. Фиг.1). Такой ионный комплекс способен к электролитическому процессу с осаждением фуллерена С60 на аноде, проходящему по схеме:
На катоде:
На аноде:
Задачей данного изобретения является получение альтернативного существующим методам метода получения фуллереновой пленки на металлах, а также графите. Существенным отличием существующих электрохимических методов получения фуллереновой пленки (1. CN 102002747A, МПК C25D, опубл. 06.04.2011, реферат, фиг.1-6.
2. JP 06-025896, МПК C25D 13/02, опубл. 01.02.1994, реферат, формула, описание абзацы [0009], [0010], [0012], [0013], [0014], [0022], [0023], [0009]) от предлагаемого метода является то, что по своей сути эти электрохимические методы осаждения фуллереновой пленки на металлические поверхности не являются электролизом, а являются электрофорезом, так как они основаны на осаждении нейтральных, но диспергированных в органических растворителях частиц фуллерена под действием электрического поля, приложенного к электродам.
Способ получения фуллереновой пленки на токопроводящих материалах электрохимическим осаждением из раствора фуллерена, отличающийся от способа электрохимического осаждения при постоянном токе из раствора фуллерена, рассмотренного в Методике нанесения тонких фуллереновых пленок на циркониевые подложки (ЩУР Д.В. «Наносистемы, наноматериалы, нанотехнологии», 2010, т.8, № 2, с.415-419), тем, что осаждение пленки проводят на аноде из безводного раствора фуллерена в пиридин-ацетоновой смеси при соотношении пиридина к ацетону 1:4, температуре 20-30°C, разности потенциалов 6,0-8.0 V, плотности тока 1,0-2,0 мА/дм 2 и длительности процесса 30-60 мин.
В предлагаемом методе используется электролит, содержащий пиридиновый комплекс фуллерена и являющийся истинным раствором, а не взвесью диспергированных частиц. Поэтому электролитический процесс осаждения фуллерена на аноде, предлагаемый в данном методе, является именно электролизом. Известно, что пленки, полученные электролизом, более однородны, чем пленки, полученные при электрофорезе.
Как обнаружено автором, образовавшаяся фуллереновая пленка устойчива к воздействию разбавленных растворов минеральных кислот, органических кислот, растворов щелочи и аммиака. Пленка имеет золотисто-коричневатый цвет.
Фуллереновая пленка является биосовместимым покрытием, инертным в отношении биологических объектов, способствующая интеграции небиологических объектов в ткани организма. Нанесение пленки фуллерена нанометровой толщины на протезы, имплантируемые в кровеносное русло (клапаны, стенты), позволит снизить адгезию на них белков крови и тромбоцитов и уменьшит риск образования тромбов у пациента. О таких свойствах пленок нанокластеров углерода, к которым относится и фуллереновая пленка, имеются сведения в литературе:
1.«Нанесение углеродной пленки нанометровой толщины на протезы, имплантируемые в кровеносное русло (клапаны, стенты), позволяет снизить адгезию на них белков крови и тромбоцитов и уменьшает риск образования тромбов у пациента»
http://thesaurus.rusnano.com/wiki/article595
2. «Полимеры для сосудистой транспланталогии покрывают углеродными кластерами, чтобы достичь избирательной адсорбции кровяных белков без риска тромбообразования»
http://www.nanonewsnet.ru/bioq/nikst/biosovmestimye-pokrytiya-dlya-meditsinskikh-implantatov
Фуллереновая пленка, полученная этим способом, после структурирования, заключающегося в нагревании ее в атмосфере аргона при температуре 300-400°C, прошла испытания в НПЦ «Квадра»
http://npckvadra.ru/nanostrukturirovannoe-uglerodnoe-pokrytie/:
«Наноструктурированное углеродное покрытие наносится электрохимическим способом с использованием стандартного гальванического оборудования. Получаемое покрытие характеризуется высокой механической прочностью и твердостью, низким коэффициентом трения, биологической инертностью и химической стойкостью, низкой адгезией различных загрязнений к его поверхности. Области применения данного покрытия: покрытие медицинских изделий, металлорежущих инструментов, пар трения, антипригарные покрытия для посуды и др. Однако с учетом того, что стоимость покрытия существенно ниже, чем аналогичных покрытий, наносимых традиционными методами, области его применения могут быть существенно более обширными. Покрытие может быть нанесено на широкий спектр металлических и неметаллических материалов (диэлектрики нуждаются в предварительной активации поверхности) с использованием одного и того же электролита, но разными режимами по току. Технология безотходна, а полная себестоимость покрытия, включая стоимость электролита на порядок и более, меньше стоимости углеродных покрытий с аналогичными свойствами, наносимыми традиционными способами. В ряде случаев (покрытие стали, алюминиевых сплавов, меди и др.) реальная себестоимость покрытия может быть сопоставима с себестоимостью таких традиционных покрытий, как никель или хром».
Примеры изделий с нанесенным наноструктурированным покрытием:
метчик, титановые пластины для остеосинтеза, стальная спица для остеосинтеза (см. http://npckvadra.ru/wp-content/uploads/2013/05/nanouglerod.ipq или Фиг.5 (ч/б копию фотографии)).
Сущность изобретения
Указанная задача решается тем, что предложен электрохимический метод получения фуллереновой пленки на токопроводящих поверхностях, в частности на металлах, при котором раствор фуллерена в пиридине подвергают электролизу. Автором изобретения обнаружено, что при пропускании постоянного тока через раствор фуллерена в пиридине на аноде образуется фуллереновая пленка; катод при этом остается чистым. Во избежание анодных процессов в водной среде: анодирования, растворения анода процесс проводят только в безводном электролите.
Обнаруженное автором электрохимическое осаждение фуллереновой пленки на токопроводящих материалах, в частности на металлических, может быть использовано для получения биосовместимых защитных покрытий металлических частей протезов, инертных в отношении биологических объектов. Другие возможные области применения фуллереновых пленок радиоэлектроника и физика полупроводников.
Подробное описание изобретения
Для осуществления изобретения растворяют 1,0 г фуллерена С60 в 200 мл пиридина и добавляют 800 мл ацетона. Полученную пиридин-ацетоновую смесь (в соотношении 1:4) помещают в герметичную электролитическую ванну объемом 1,5-1,7 л.
Электроды очищают и обезжиривают трихлорэтиленом или другим растворителем, применяемым для этих целей в гальванических производствах, и погружают в электролитическую ванну с электролитом (с раствором фуллерена в смеси пиридина и ацетона в соотношении 1:4).
Электрохимический процесс проходит при температуре 20-30°C, разнице потенциалов электродов 6,0-8,0 V и плотности тока 1,0-2,0 мА/кв.дм. При этом на поверхности анода происходит осаждение отрицательных ионов фуллерена, которое приводит к образованию фуллереновой пленки, а положительный пиридиний-ион разряжается на катоде и возвращается в раствор электролита (см. схему электролиза).
Процесс заканчивают при снижении тока процесса до 50-70% от первоначального значения из-за возрастающего электрического сопротивления образующейся пленки.
По окончании процесса образования фуллереновой пленки изделие вынимают из ванны, промывают дистиллированной водой и сушат. Цвет пленки - золотисто-коричневатый.
Как обнаружено автором, образовавшаяся фуллереновая пленка устойчива к воздействию разбавленных растворов минеральных кислот, органических кислот, растворов щелочи и аммиака. Пленка имеет золотисто-коричневатый цвет.
Следует отметить, что изобретением предусмотрена единственная стадия процесса, заключающаяся лишь в пропускании постоянного электрического тока небольшой плотности через раствор фуллерена в пиридин-ацетоновой смеси. Процесс проходит без дополнительных реагентов в безводной среде. Вклад данного изобретения в уровень техники заключается в том, что из пиридин-ацетонового раствора фуллерена в процессе электролиза осаждается фуллереновая пленка, для которой предполагается использование в эндопротезировании, в радиоэлектронике и в физике полупроводников.
Пример 1. Получение фуллереновой пленки на нержавеющей стали марки X2CrNi12
Готовят 1 л раствора фуллерена в пиридин-ацетоновой смеси. Для этого растворяют 1,0 г фуллерена С60 в 200 мл пиридина и добавляют 800 мл ацетона. Полученную пиридин-ацетоновую смесь (в соотношении 1:4) помещают в герметичную электролитическую ванну объемом 1,5-1,7 л.
В качестве электродов используют нержавеющую сталь марки X2CrNi12. Электроды очищают и обезжиривают трихлорэтиленом или другим растворителем, применяемым для этих целей в гальванических производствах. На электроды подают постоянный ток напряжением 6,0- 7,5 В, при этом плотность тока составляет 1,3-1,7 мА/кв.дм, а длительность электрохимического процесса составляет 30-60 мин. По окончании процесса образования фуллереновой пленки изделие вынимают из ванны, промывают дистиллированной водой и сушат. Цвет пленки - золотисто-коричневатый (см. Фиг 2).
Пример 2. Получение фуллереновой пленки на электротехнической меди марки ММ1
Готовят 1 л раствора фуллерена в пиридин-ацетоновой смеси. Для этого растворяют 1,0 г фуллерена С60 в 200 мл пиридина и добавляют 800 мл ацетона. Полученную пиридин-ацетоновую смесь (в соотношении 1:4) помещают в герметичную электролитическую ванну объемом 1,5-1,7 л.
В качестве катода используют нержавеющую сталь марки X2CrNi12, а в качестве анода - электротехническую медь марки ММ1. Электроды очищают и обезжиривают трихлорэтиленом или другим растворителем, применяемым для этих целей в гальванических производствах. На электроды подают постоянный ток напряжением 6,5- 7,0 В, при этом плотность тока составляет 1,5-1,8 мА/кв.дм, а длительность электрохимического процесса составляет 30-60 мин. По окончании процесса образования фуллереновой пленки фуллерена изделие вынимают из ванны, промывают дистиллированной водой и сушат. Цвет пленки - золотисто-коричневатый (см. Фиг.).
Предполагается, что полученная фуллереновая пленка на металлах может быть использована для получения биосовместимых защитных покрытий металлических частей протезов в эндопротезировании. Другие возможные области применения фуллереновых пленок - радиоэлектроника и физика полупроводников.
Ниже, (см. Фиг.4) приведено изображение фуллереновой пленки на металле, осажден ной электрохимическим методом из пиридин-ацетонового раствора фуллерена, выполненное на атомно-силовом микроскопе (АСМ). По предварительной оценке толщина фуллереновой пленки составляет порядка 5-10 нм.
Класс B82Y40/00 Изготовление или обработка нано-структур