способ получения металлического рения путем восстановления перрената аммония
Классы МПК: | C22B61/00 Получение металлов, не отнесенных к предыдущим группам этого подкласса |
Автор(ы): | Аникин Вячеслав Николаевич (RU), Коноков Геннадий Хаджимусович (RU), Золотарева Наталья Николаевна (RU), Аникеев Александр Иванович (RU), Белокопытова Кристина Евгеньевна (RU), Тамбовцева Алла Аганесовна (RU), Лукьянычев Сергей Юрьевич (RU), Аникин Григорий Вячеславович (RU), Аникина Татьяна Георгиевна (RU), Крючков Константин Викторович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов" (ФГУП "ВНИИТС") (RU) |
Приоритеты: |
подача заявки:
2013-02-07 публикация патента:
10.04.2014 |
Изобретение относится к области металлургии редких тугоплавких металлов. Способ получения металлического рения путем восстановления перрената аммония включает размещение порошка перрената аммония в лодочке и его восстановление противотоком остро осушенного водорода с непрерывным продвижением лодочки в трубчатой печи при температуре 300-330 °С. Перед восстановлением проводят продувку порошка перрената аммония аргоном с нагревом в трубчатой печи до температуры 200 °С. Способ обеспечивает получение не требующего очистки от примесей порошка рения, а также сокращение потерь порошка рения. 1 табл., 1 пр.
Формула изобретения
Способ получения металлического рения путем восстановления перрената аммония, включающий размещение порошка перрената аммония в лодочке и его восстановление противотоком водорода при нагревании с непрерывным продвижением лодочки в трубчатой печи, отличающийся тем, что перед восстановлением проводят продувку порошка перрената аммония аргоном с нагревом в трубчатой печи до температуры 200 °С, а для восстановления используют остро осушенный водород при температуре 300-330 °С.
Описание изобретения к патенту
Изобретение относится к области металлургии редких тугоплавких металлов, а именно к способам получения порошков рения из его соединений восстановлением с использованием газообразных восстановителей.
Известен способ восстановления перрената калия, заключающийся в том, что процесс восстановления проводят в две стадии. После первой стадии восстановления, проводимой при температуре 500-550°С, полученный продукт промывают водой для удаления щелочи. Вторую стадию восстановления проводят при температуре 900-1000°С. В результате получают порошок рения с примесями порошка калия (Ю.А. Быховский, Р.Л. Веллер, Н.С.Грейвер и др. «Основы металлургии. Редкие металлы». Т. 4. М., Металлургия, 1967, стр.634-643).
Основным недостатком данного способа является то, что порошки рения, полученные восстановлением KReО4, содержат в своем составе повышенное количество калия. В дальнейшем требуется дополнительная очистка от калия, что приводит к потери порошка рения, увеличению времени производства, энергозатрат и количества требуемых реагентов.
Наиболее близким техническим решением является способ получения порошка рения путем восстановления водородом из перрената аммония:
2NH4ReО4+7Н 2=2Re+2NH3+8Н2О
Перренат аммония перед восстановлением измельчают в покрытых резиной мельничных барабанах с измельчающими телами из обломков рениевых штабиков. Измельченный перенат аммония восстанавливают водородом в трубчатых печах с непрерывной продвижкой лодочек из молибдена или сплава никеля с молибденом. Подачу водорода осуществляют противотоком. Перренат аммония засыпают тонким слоем (6-8 мм). Восстановление ведут в две стадии: при температуре 350-370 °С до образования ReO2, затем при температуре 950-970 °С до получения металлического рения. Время пребывания лодочек в горячей зоне печи составляет 1-2 часа (Зеликман А.Н., Коршунов Б.Г. «Металлургия редких металлов». М., «Металлургия», 1991 г., стр.233).
Недостатком данного способа является то, что полученный в результате восстановления порошок рения крупнодисперсный и его приходится подвергать размолу в шаровых мельницах, что приводит к натиранию примесей к рению. Кроме того, получение рения проходит в две стадии, что увеличивает время, энергозатраты и количество требуемых реагентов.
Задачей предлагаемого технического решения является разработка способа получения металлического мелкодисперсного (размер частиц 2-4 мкм) порошка рения, позволяющего сократить потери порошка рения, проводить процесс в одну стадию, что позволяет сократить время проведения технологического процесса, энергозатраты и количество требуемых реагентов. Кроме того, порошок рения получают без примесей, что не требует дополнительной его очистки.
Поставленная задача решается за счет того, что в способе получения металлического рения путем восстановления перрената аммония, включающем измельчение исходного соединения рения, восстановление его противотоком водорода с непрерывным продвижением лодочек в трубчатой печи при нагревании, перед подачей водорода проводят предварительно продувку печи аргоном, а восстановление осуществляют при температуре 300-330 °С остро осушенным водородом.
В предлагаемом способе получения металлического рения перед восстановлением перрената аммония в водороде проводят предварительную продувку порошка и печи аргоном при температуре 200 °С. При этих условиях порошок перрената аммония начинает интенсивно разлагаться. После начала процесса разложения перрената аммония необходимо для осуществления процесса восстановления с образованием порошка рения заменить аргон на водород.
Процесс восстановления осуществляли остро осушенным водородом при температуре 300-330 °С. Остро осушенный водород с точкой россы (-68) °С получали при проведении очистки водорода цеолитом В и с точкой россы (-84) °С при очистке палладиевым фильтром. Применение остро осушенного водорода позволяет уменьшить потери порошка рения до 0,2-2,0% по массе за счет снижения выноса рения из зоны реакции в составе образующегося летучего оксида рения Re 2O7.
Получение металлического порошка рения проходит в одну стадию при температуре 300-330 °С. При данной температуре при водородном восстановлении происходит полное разложение перрената аммония до окислов, сопровождаемое активным восстановлением рения с Re7+ до Re4+ и до Re°. При температуре 300-330 °С получается чистый порошок рения с мелкозернистой структурой (размер зерна 2-3 мкм). При температуре ниже 300 °С может идти реакция до образования Re2O7, который выносится из реактора за счет своей высокой летучести уже при температуре 100 °С. С увеличением температуры образуется ReO2 , который остается в порошке и затрудняет получение чистого рения за счет более трудного восстановления до рения, чем прямое восстановление рения из перрената аммония. Дальнейшее увеличение температуры свыше 330 °С приводит к росту зерна рения (размер зерна 5-7 мкм) и повышению его химической активности, что, в конечном итоге, ведет к потерям порошка рения при его производстве.
В результате использования предлагаемого технического решения по восстановлению перрената аммония получается мелкодисперсный (размер зерна 2-3 мкм), высокочистый (99,97%) порошок рения, не требующий дальнейшего размола, с минимальным содержанием примесей и допустимым содержанием кислорода. В отличии от известных способов получения металлического порошка рения предложенный способ осуществляется в одну стадию, что значительно снижает энергозатраты и время проведения процесса.
Пример. Берут порошок перрената аммония производства завода «ПОБЕДИТ» (ГОСТ 31411-2009) в количестве 2 кг и баллонный водород технический (точка россы -32 °С) по ТУ 6-20-00209585-26-97. Порошок перрената аммония размещают в лодочке трубчатой печи. Затем проводят продувку порошка перрената аммония аргоном и нагревают печь до температуры 200 °С. После достижения данной температуры подачу аргона заменяют остро осушенным водородом (точка россы -84 °С), очищенным палладиевым фильтром, температуру поднимают до 330 °С и осуществляют восстановление порошка перрената аммония при непрерывном продвижении лодочки в трубчатой печи. Осуществляют выдержку до завершения процесса восстановления. Завершение процесса восстановления определяется по прекращению выделения паров аммиака в барботере в виде тумана. После этого осуществляют дополнительную выдержку в течение 15 мин. Далее охлаждают порошок в течение 4 часов. После полного охлаждения порошок рения взвешивают и определяют потери массы.
Были проведены серии опытов, в которых использовалась разная методика осушения водорода. Результаты испытаний приведены в таблице.
№ | Методика | Точка | Объемное | Масса | Потери |
п/п | осушения | россы | содержание | полученного | по массе, |
водорода | водорода,°С | воды, г/л | порошка металлического рения, кг | % | |
1 | 2 | 3 | 4 | 5 | 6 |
1 | Технический водород | -32 | 0,4·10 -3 | 0,874 | 37 |
2 | Водород, очищенный ангидроном | -55 | 0,34·10-4 | 1,32 | 5 |
3 | Водород, очищенный цеолитом В | -68 | 0,9·10-5 | 1,36 | 2 |
4 | Водород, очищенный палладиевым фильтром | -84 | 0,5·40-6 | 1,39 | 0,2 |
Как видно из таблицы, наименьшая потеря массы порошка металлического рения получена при использовании остро осушенного водорода (точка россы -84 °С) и составила 0,2% масс. При использовании стандартного метода очистки водорода потери составляют более 2% масс.
Содержание различных примесей в полученном порошке рения незначительное и полностью соответствует ТУ 48-19-92-88. Количество адсорбционного кислорода составляет 0,4%, количество общего кислорода - 0,63% по массе. Массовая доля полученного порошка рения составила 99,3%. Средний размер полученных частиц порошка рения составил 2,98 мкм. В результате был получен мелкодисперсный, чистый порошок рения.
Структура полученного порошка рения позволяет использовать его лигирующий элемент в кобальтовую связку твердого сплава. Рений способствует повышению температуры разупрочнения твердых сплавов, следовательно, увеличению их твердости и износостойкости при повышенных температурах, а также уменьшению адгезии с обрабатываемым жаропрочным материалом.
Получение порошка рения предложенным способом позволяет снизить энергозатраты, время производство и отличается простотой аппаратного оформления.
Класс C22B61/00 Получение металлов, не отнесенных к предыдущим группам этого подкласса