состав селективного растворителя для выделения методом жидкостной экстракции из прямогонной дизельной фракции алкилдибензотиофенов и азотсодержащих соединений

Классы МПК:C10G21/20 азотсодержащие соединения 
C10G21/22 соединения, содержащие серу, селен или теллур 
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегородский научно-исследовательский и проектный институт по переработке нефти" ООО "ЛУКОЙЛ-Нижегородниинефтепроект" (RU)
Приоритеты:
подача заявки:
2012-09-19
публикация патента:

Изобретение относится к области нефтепереработки. Изобретение касается состава селективного растворителя для выделения методом жидкостной экстракции из прямогонной дизельной фракции алкилдибензотиофенов и азотсодержащих соединений. Селективный растворитель представляет собой раствор ацетанилида в диметилформамиде или в диметилсульфоксиде при следующем соотношении компонентов, % масс: ацетанилид - 40-50, диметилформамид или диметилсульфоксид - остальное. Технический результат - улучшенная очистка дизельного топлива. 1 ил., 5 табл.

состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020

Формула изобретения

Состав селективного растворителя для выделения методом жидкостной экстракции из прямогонной дизельной фракции алкилдибензотиофенов и азотсодержащих соединений, отличающийся тем, что в качестве экстрагента используется ацетанилид растворенный в диметилформамиде или в диметилсульфоксиде при следующем соотношении компонентов, % масс:

ацетанилид40-50
диметилформамид или диметилсульфоксид остальное.

Описание изобретения к патенту

Изобретение относится к области нефтепереработки и может быть использовано при получении малосернистого дизельного топлива на стадии подготовки сырья для процесса гидроочистки.

При получении дизельного топлива с содержанием серы не более 10 ppm производители столкнулись с необходимостью повышения «жесткости» режима на установках гидроочистки дизельного топлива: повышения давления, температуры, снижения объемной скорости, повышения концентрации водорода в циркулирующем газе, необходимости применения новых эффективных катализаторов, облегчения фракционного состава сырья установок гидроочистки - прямогонных дизельных фракций с 180-360°С до 180-340°С /1/. Все это в значительной мере привело к удорожанию продукции - дизельного топлива.

Проблемы, возникшие при получении малосернистого дизельного топлива, объясняются содержанием в прямогонной дизельной фракции пространственно блокированной, трудноудаляемой серы содержащейся в алкилдибензотиофенах.

Прямогонная дизельная фракция содержит также различные соединения азота, которые также затрудняют получение дизельного топлива с содержанием серы до 10 ppm.

Такие соединения азота, преимущественно, представляют собой замещенные полиароматические соединения, взаимодействующие с активными центрами катализатора, блокируя их через реакции гидрогенизации/гидрогенолиз.

Благодаря структуре катализатора, такие соединения азота сильнее адсорбируются к катализатору по сравнению с серосодержащими замещенными полиароматическими соединениями. Следовательно, они могут заблокировать доступ серосодержащим замещенным полиароматическим соединениям к активным центрам катализатора и, следовательно, снизить скорость, с которой серу удаляют из самих замещенных полиароматических соединений, что является ограничивающим фактором в производстве дизтоплив со сверхнизким содержанием серы /2/. Выделение алкилдибензотиофенов и азотсодержащих соединений методом фракционирования не представляется возможным, так как температура кипения этих соединений находится в интервале 200-360°С, и они имеют близкие температуры кипения с остальными углеводородами, содержащимися во фракции, 200-360°С.

Удаление алкилдибензотиофенов и азотсодержащих соединений из прямогонной дизельной фракции требует других подходов.

К перспективным методам повышения качества дизельного топлива, альтернативным гидрогенизационным процессам относятся способы облагораживания дизельного топлива жидкостной экстракцией. В монографии /3/ рассмотрен ряд обзоров, посвященных экстракционной очистке нефтепродуктов селективными растворителями. Отмечается эффективность использования методов жидкостной экстракции для извлечения ароматических, азотсодержащих, сераорганических соединений из бензиновых, дизельных фракций, и приводится ряд составов селективных растворителей. Для извлечения из гидроочищенных дизельных фракций ароматических соединений и серосодержащих соединений предлагается использовать ацетонитрил, 2-метоксиэтанол (метилцеллозольв), фенол, N-метилпирролидон-ундекан /4,5/.

Наиболее близким по составу и принятым за прототип является экстракционная система, состоящая из диметилформамида или диметилацетамида, воды 3-5% и пентана /6/. Этот состав используется для извлечения методом жидкостной экстракции из гидроочищенных дизельных фракций ароматических и серосодержащих соединений /6/.

Техническим решением предлагаемого изобретения является состав селективного растворителя представляющий собой раствор ацетанилида в диметилформамиде (ДМФА) или диметилсульфоксиде (ДМСО). Указанные соединения известны в литературе, используются на практике и их физические свойства приведены в таблице 1.

состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020

Как видно из физико-химической характеристики, ацетанилид представляет собой твердое кристаллическое соединение, для использования его в качестве селективного растворителя в процессе жидкостной экстракции ацетанилид растворяют в ДМФА или в ДМСО. ДМСО также используется для очистки масляных фракций от полициклических ароматических соединений /7/. Ацетанилид - это органическая соль, продукт взаимодействия анилина и уксусной кислоты, молекула ацетанилида содержит ароматическое ядро и атом азота, его химическое строение способствует извлечению дибензалкилтиофенов и азотсодержащих соединений, что подтверждено экспериментом.

Концентрация ацетанилида выбрана в интервале 40-50% масс, так как при содержании ацетанилида больше 50% начинается кристаллизация ацетанилида, а раствор с концентрацией меньше 40% проявляет пониженную селективность. ДМФА И ДМСО уступают в степени извлечения дибензалкилтиофенов и азотсодержащих соединений из «тяжелых» прямогонных дизельных фракций ацетанилиду.

Результаты процесса жидкостной экстракции с использованием предлагаемого селективного растворителя на трехступенчатой пилотной установке в условиях /8/: температура 40-45°С, массовое соотношение сырье:селективный растворитель 1:3 приведены в таблицах 2-5. Подобранный состав селективного растворителя позволяет снизить содержание в прямогонной дизельной фракции алкилдибензотиофенов, азотсодержащих соединений, общее содержание ароматических углеводородов, повысить цетановый индекс.

Физико-химическая характеристика рафинатов, полученных на трехступенчатой пилотной установке жидкостной экстракции в условиях: температура 40-45°С, массовое соотношение сырье:селективный растворитель 1:3. Селективный растворитель - раствор ацетанилида в ДМФА

Таблица 2
ПоказателиСырье пилотной установки Ацетанилид-50%, ДМФА-50% Ацетанилид-45%, ДМФА -55%Ацетанилид-40%, ДМФА -60%
1. Фракционный состав, °СПрямогонная дизельная фракция Рафинат 1Рафинат 2 Рафинат 3

Продолжение таблицы 2
HK199 209205198
10%242 258257250
50%298 302300298
90%344 343344341
96%360 356354353
2-Плотность при 20°С, г/см3 0,85070.8197 0,82780,8293
3. Содержание серы, %масс 1,0870,4030,648 0,804
4. Содержание азота, ppm106,415 2044
5. Содержание ароматических углеводородов, %масс состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020
моно- 14,749,8110,36 13,58
ди- (в том числе алкилдибензотиофены)7,71 02,713,81
поли0,91 0,040,180,19
суммарное содержание ароматических углеводородов23,36 9,8513,2517,58
4. Цетановый индекс 526361 58

Физико-химическая характеристика экстрактов, полученных на трехступенчатой пилотной установке жидкостной экстракции в условиях: температура 40-45°С, массовое соотношение сырье: селективный растворитель 1:3. Селективный растворитель - раствор ацетанилида в ДМФА.

Таблица 3
Наименование пробыЭкстракт 1 Экстракт 2Экстракт 3
Содержание азота, ppm179 565580
Содержание серы, %2,2102,385 2,618
Плотность при 20°С, г/см30,909 0,8980,895

Физико-химическая характеристика рафинатов, полученных на трехступенчатой пилотной установке жидкостной экстракции в условиях: температура 40-45°С, массовое соотношение сырье:селективный растворитель 1:3. Селективный растворитель - раствор ацетанилида в ДМСО.

Таблица 4
ПоказателиСырье пилотной установки жидкостной экстракцииАцетанилид-50%, ДМСО-50% Ацетанилид-45%, ДМСО -55% Ацетанилид-40%, ДМСО -60%
1. Фракционный состав, °СПрямогонная дизельная фракция Рафинат 4Рафинат 5 Рафинат 6
HK 199208 206200
10% 242256 258252
50% 298300 301299
90% 344345 343343

Продолжение таблицы 4
96%360 358355354
2. Плотность при 20°С, г/см3 0,85070,8199 0,82800,8295
3. Содержание серы, %масс 1,0870,6100,672 0,850
4. Содержание азота, ppm106,420 2550
5. Содержание ароматических углеводородов, %масс состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020 состав селективного растворителя для выделения методом жидкостной   экстракции из прямогонной дизельной фракции алкилдибензотиофенов   и азотсодержащих соединений, патент № 2513020
моно- 14,749,9110,88 13,60
ди-(в том числе алкилдибензотиофены)7,71 2,523,204,20
Поли-0,91 0,10,20 0,35
суммарное содержание ароматических углеводородов23,36 12,5314,2818,15
6. Цетановый индекс 526261 57

Физико-химическая характеристика экстрактов, полученных на трехступенчатой пилотной установке жидкостной экстракции в условиях: температура 40-45°С, массовое соотношение сырье:селективный растворитель 1:3. Селективный растворитель - раствор ацетанилида в ДМСО.

Таблица 5
Наименование пробыЭкстракт 4 Экстракт 5Экстракт 6
Содержание азота, ppm175 560575
Содержание серы, %2,112,360 2,518
Плотность при 20°С, г/см0,906 0,8990,893

Раствор ацетанилида в диметилформамиде и диметилсульфоксиде представляют собой слегка окрашенную в розовый цвет жидкость с плотностью при 20°С 1,006-1,0376 г/см 1,008-1,0434 г/см3 соответственно.

Все опыты проводились на трехступенчатой пилотной установке жидкостной экстракции. Технологическая схема пилотной установке жидкостной экстракции приведена на рис.1.

Описание технологической схемы пилотной установки жидкостной экстракции.

Сырье - дизельная фракция 199-360°С, из мерника-1 насосом-3 подают в низ экстракционной колонны-5. Насосом 4 из мерника-2 подают селективный растворитель на верх колонны-5. Сырье, вследствие меньшей плотности, поднимается навстречу селективному растворителю, стекающему вниз. Для увеличения массообмена колонна-5 заполнена насадкой.

После экстрагирования с верха колонны-5 выводят рафинатный раствор, который поступает в емкость-6. С низа колонны-5 выводят экстрактный раствор и собирают в емкость-7. Линии подачи сырья и селективного растворителя в колонну-5, а также линии выводов растворов рафината и экстракта из колонны-5 изготовлены из металлических труб диаметром 8,0 мм и представляют собой теплообменники типа "труба в трубе". Во внешнюю трубу из термостатов поступает вода для обогрева. На установке используют два термостата. Гидравлическую часть насосов-3, 4 и мерников-6, 7 также обогревают горячей водой от термостатов.

Температуру в мерниках-6, 7 и в колонне-5 измеряют с помощью термометров. Давление на выкидных линиях насосов-3, 4 замеряют с помощью манометров.

Выход полученных рафинатов составляет 80-85% масс в пересчете на взятое сырье. Согласно патента /8/? полученные рафинаты являются компонентом сырья установок гидроочистки дизельного топлива среднего давления до 40 кг/см при получении дизельного топлива до 10 ppm. Для подтверждения этого на пилотной установке гидроочистки дизельного топлива провели процесс гидроочистки полученных рафинатов 1-6 (таблицы 2,4) в условиях: давление 40 кг/см2, температура 360°С, объемная скорость 2 час-1, соотношение ВСГ: сырье 300-350 нл/л. Содержание серы в полученных рафинатах было меньше 10 ppm.

Предложенный состав селективного растворителя позволяет извлекать из тяжелой прямогонной дизельной фракции 199-360°С трудноудаляемые в процессе гидроочистки дибензалкилтиофены и азотсодержащие соединения и тем самым расширить фракционный состав сырья при получении дизельного топлива Евро-5 благодаря вовлечению в сырье очищенной дизельной фракции 199-360°С.

Литература

Патент РФ № 2387700 С1, 27.04.2010.

1. Salvatore Torrisi, Michael Gunter, журнал "Petroleum Technology Quarueriy", 2004 г., т.9, № 4, стр.29-35.

2. А.А. Гайле, В.Е. Сомов, Г.Д. Залищевский. Селективные растворители. Разделение и очистка углеводородсодержащего сырья. Химиздат, Санкт-Петербург, 2008 г.

3. Патенты RU 2139910 С1, 20.10.1999; RU 2148070 С1, 27.04.2000; RU 2148070 С1, 27.04.2000.

4. А.А. Гайле, В.В. Колесов, В.Н. Чистяков, Ю.А. Цхведиане, Б.М. Сайфидинов. Малотоннажная переработка нефти, газа и газоконденсата. Химиздат, Санкт-Петербург, 2010 г.

5. Патент RU 2185416 С1, 20.07.2002.

6. Патент RU 2313562 С1, 02.06.2006.

7. Патент RU 2458104 С1, 22.06.2011.

Класс C10G21/20 азотсодержащие соединения 

способ очистки моторного масла от продуктов старения и загрязнений -  патент 2528421 (20.09.2014)
способ получения нефтяного пластификатора -  патент 2513099 (20.04.2014)
способ деароматизации бензиновой фракции - сырья пиролиза -  патент 2501842 (20.12.2013)
способ получения экологически чистого дизельного топлива -  патент 2497931 (10.11.2013)
способ очистки легких углеводородных фракций -  патент 2492213 (10.09.2013)
способ деазотирования дизельного топлива -  патент 2490309 (20.08.2013)
способ очистки углеводородных смесей от азотсодержащих гетероциклических соединений -  патент 2460760 (10.09.2012)
способ получения дизельного топлива -  патент 2458104 (10.08.2012)
способ получения экологически чистого дизельного топлива -  патент 2441055 (27.01.2012)
способ селективной очистки масляного дистиллята под воздействием магнитного поля -  патент 2427609 (27.08.2011)

Класс C10G21/22 соединения, содержащие серу, селен или теллур 

Наверх