светодиодное устройство
Классы МПК: | H01L33/58 оптические элементы, формирующие поле |
Автор(ы): | Полякова Инесса Петровна (RU), Пуйша Александр Эдуардович (RU), Кузовая Вера Лаврентьевна (RU), Кононова Галина Алексеевна (RU) |
Патентообладатель(и): | Полякова Инесса Петровна (RU), Пуйша Александр Эдуардович (RU), Кузовая Вера Лаврентьевна (RU), Кононова Галина Алексеевна (RU) |
Приоритеты: |
подача заявки:
2012-06-27 публикация патента:
20.04.2014 |
Изобретение относится к области оптического приборостроения, а именно к классу мощных светодиодов, которые используются в качестве аналогов галогенных ламп, а также для потолочных, индустриальных, фасадных и других светильников. Светодиодное устройство состоит из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, причем над каждым чипом поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм. Диаметр этой поверхности составляет D=(1,75 2,3)Dc, где Dc - размер излучающей поверхности чипа, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может иметь над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота h и ширина t этого устройства не превышает (0,1 0,15)D. Поверхность, граничащая с воздухом, может быть выполнена на плоскоыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом. Изобретение обеспечивает повышение энергетических параметров устройства, а именно значительное увеличение осевой силы света за счет увеличения угла охвата излучения кристалла до 1=±65°, при этом потери чипа уменьшаются до E=6%. 2 з.п. ф-лы, 4 ил.
Формула изобретения
1. Светодиодное устройство, состоящее из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, отличающееся тем, что над каждым чипом-излучателем поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм, причем диаметр этой поверхности составляет D=(1,75 2,1)Dc, где Dc - размер излучающей поверхности чипа, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм.
2. Светодиодное устройство по п.1, отличающееся тем, что поверхности, граничащие с воздухом, имеют над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота и ширина этого устройства не превышает (0,1 0,15)D.
3. Светодиодное устройство по п.1, отличающееся тем, что поверхность, граничащая с воздухом, выполнена на плосковыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом.
Описание изобретения к патенту
Изобретение относится к области оптического приборостроения, а именно к классу мощных светодиодов «Chip-on-board», которые используются в качестве аналогов галогенных ламп, а также для потолочных, индустриальных, фасадных и других светильников.
Использование кристаллов, излучающих свет в различной цветовой гамме оптического диапазона, дает возможность получения светодиодных устройств с широким разнообразием цветов и оттенков светового потока. Основным достоинством этих устройств является их большая энергосберегаемость (малая потребляемая мощность электроэнергии) и большие практически неограниченные сроки службы по сравнению с обычными галогенными светильниками.
Наиболее важными энергетическими параметрами светодиодного устройства являются осевая сила света и индикатриса распределения светового потока по углу расходимости светового излучения на выходе устройства, которые в очень большой степени зависят от конструкции устройства на границе гель - воздух.
Известны промышленные образцы СОВ фирмы «Оптоган» [1], описание конструкций которых даны в статье [2]. Они представляют собой массив из одного или нескольких светодиодных чипов, установленных по различной топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля с кристаллами люминофора, причем наружная поверхность геля, контактирующая с воздухом, является плоской. По технической сущности эти устройства наиболее близки к предлагаемому светодиодному устройству и являются прототипом настоящего изобретения.
Данная конструкция системы не позволяет получить высоких энергетических параметров, так как используемый угол охвата прямого излучения кристалла не превышает ±40°, в то время как прямое излучение кристалла распространяется в углах ±90°, что соответствует индикатрисе излучения кристалла, представленной на Фиг.1. Это приводит к потере энергии не менее 25%, что является основным недостатком прототипа.
Целью предлагаемого изобретения является повышение энергетических параметров светодиодных устройств типа СОВ, а именно значительное увеличение осевой силы света при использовании прямого излучения кристалла чипа с углом охвата излучения не менее ±65°.
Эта цель достигается тем, что светодиодное устройство, состоящее из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку, покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, причем над каждым чипом-излучателем поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм. Диаметр этой поверхности составляет D=(1,75 2,3)Dс, где Dc - размер излучающей поверхности чипа, причем D=D0, где D0 - расстояние между оптическими осями излучателей-чипов, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может иметь над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота h и ширина t этого устройства не превышает (0,1 0,15)D. Поверхность, граничащая с воздухом, может быть выполнена на плосковыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом.
На Фиг.2 в качестве примера представлена принципиальная схема предлагаемого светодиодного устройства. В его состав входят чипы-излучатели (1), размещенные на плоской подложке (2) и покрытые общим слоем компаунда-геля (3), возможно с кристаллами люминофора, при этом расстояние между оптическими осями чипов D0, а поверхность, граничащая с воздухом, является сферической или асферической (с радиусом при вершине R не более 4 мм) и имеет диаметр D=(1,75 2,3)Dc, где Dc - размер излучающей поверхности чипа, D=D0, причем оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может быть ограничена специальным устройством (4) по всему периметру над каждым чипом, причем высота h и ширина t этого устройства не превышает (0,1 0,15)D, как это показано на Фиг.3.
Поверхность, граничащая с воздухом, может быть выполнена на плосковыпуклой линзе (5) из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом, как это видно на Фиг.4.
Конкретные варианты конструкций светодиодного устройства, соответствующие приведенному выше описанию предлагаемого изобретения, разработаны на примере использования СОВ с излучателями-чипами (1), размеры которых Dc=1,15 мм. Чипы установлены на единой плоской подложке (2) и покрыты общим слоем компаунда-геля (3), при этом расстояние между оптическими осями чипов D0=2,5 мм. Поверхность, граничащая с воздухом, является сферической с радиусом R=2,5 мм и диаметром D=2,5 мм, что соответствует 2,17Dc , причем расстояние от излучающей поверхности чипа до вершины сферической поверхности d=0,85 мм, а оптические оси этих поверхностей совпадают, как показано на Фиг.2.
Сферические поверхности с радиусом R=3 мм на границе гель - воздух диаметром D=2,2 мм могут быть ограничены специальным устройством (4) по всему периметру над каждым чипом (как показано на Фиг.3), причем высота h=0,3 мм и ширина t=0,3 мм, что составляет 0,13D.
В соответствии с Фиг.4 на поверхности компаунда-геля над каждым чипом может быть расположена без воздушного промежутка плосковыпуклая линза (5) с радиусом наружной поверхности R=3 мм, толщиной 0,7 мм и диаметром D=2,5 мм. Линзы выполнены из органического материала макролон с показателем преломления n=1,586. Расстояние между излучающей поверхностью чипа и сферической поверхностью линзы равно d=1,05 мм. Оптические оси линз и соответственных чипов совпадают.
Положительный эффект предлагаемой конструкции светодиодного устройства заключается в том, что она обеспечивает увеличение энергетических параметров на выходе системы за счет использования значительно увеличенного угла охвата излучения кристалла в пределах 1=±65° (против 1=±40° в прототипе), при этом потери энергии чипа уменьшаются до E=(6 7)% (против E=25% в прототипе).
Источники информации
[1] Электронный документ. «Мощные светодиоды» «Chip-on- board» .
[2] Статья. Е.Мухина, П.Блашто. «Технология CHIP-on-BoARD: Основные процессы и оборудование». Электроника. Наука. Технология. Бизнес, 2008 г., № 3, стр.54-58.
Класс H01L33/58 оптические элементы, формирующие поле
светодиодное устройство - патент 2513645 (20.04.2014) | |
светодиод с оптическим элементом - патент 2506663 (10.02.2014) | |
сид на фотонных кристаллах - патент 2488194 (20.07.2013) | |
светодиодный модуль - патент 2442240 (10.02.2012) | |
светоизлучающее устройство - патент 2407110 (20.12.2010) |