быстродействующий аналого-цифровой преобразователь с дифференциальным входом

Классы МПК:H03M1/36 только одновременно, те АЦП параллельного типа
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и серсиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)
Приоритеты:
подача заявки:
2013-04-23
публикация патента:

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат заключается в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников ко входам компараторов напряжения. Для этого в отличие от известного быстродействующего аналого-цифрового преобразователя с дифференциальным входом в данном изобретении первый источник входного напряжения соединен со входом первого дополнительного буферного усилителя, выход которого связан с первыми входами каждого из компараторов напряжения через соответствующие корректирующие конденсаторы первой группы, а второй источник входного противофазного напряжения связан со входом второго дополнительного буферного усилителя, выход которого связан со вторыми входами каждого из компараторов напряжения через соответствующие корректирующие конденсаторы второй группы. 1 з.п.ф-лы, 8 ил. быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716

быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716 быстродействующий аналого-цифровой преобразователь с дифференциальным   входом, патент № 2513716

Формула изобретения

1. Быстродействующий аналого-цифровой преобразователь с дифференциальным входом, содержащий первый (1) входной буферный усилитель, вход которого соединен с первым (2) источником входного напряжения, а выход связан с первым (3) источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в том числе первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй (5) входной буферный усилитель, вход которого соединен со вторым (6) источником противофазного входного напряжения, а выход связан со вторым (7) источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в том числе первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый (9) компаратор напряжения, первый (10) вход которого соединен с выходом первого (1) буферного усилителя, а второй вход (11) подключен к общему узлу второго (7) источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй (12) компаратор напряжения, первый (13) вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход (14) подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий (15) компаратор напряжения, первый (16) вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход (17) подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-ый (18) компаратор напряжения, первый (19) вход которого соединен с общим узлом первого (3) источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход (20) подключен к выходу второго (5) буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения (9), (12), (15), (18), отличающийся тем, что первый (2) источник входного напряжения соединен со входом первого (21) дополнительного буферного усилителя, выход которого связан с первыми (10), (13), (16), (19) входами каждого из компараторов напряжения (9), (12), (15), (18) через соответствующие корректирующие конденсаторы первой группы (22, 23, 24, 25), а второй (6) источник входного противофазного напряжения связан со входом второго (26) дополнительного буферного усилителя, выход которого связан со вторыми (11), (14), (17), (20) входами каждого из компараторов напряжения (9), (12), (15), (18) через соответствующие корректирующие конденсаторы второй группы (27, 28, 29, 30).

2. Быстродействующий аналого-цифровой преобразователь с дифференциальным входом по п.1, отличающийся тем, что последовательно с каждым корректирующим конденсатором первой (22, 23, 24, 25) и второй (27, 28, 29, 30) групп включены дополнительные корректирующие резисторы.

Описание изобретения к патенту

Предлагаемое изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки аналоговой информации, измерительных приборах, системах телекоммуникаций и т.п.

В современной технике широкое применение находят параллельные аналого-цифровые преобразователи (АЦП) с дифференциальным входом, обеспечивающие наибольшую скорость преобразования аналоговых сигналов (uвх) в цифровые сигналы [1-9]. С повышением частоты входного напряжения uвх в таких микроэлектронных АЦП возникают существенные погрешности преобразования, обусловленные влиянием паразитных конденсаторов, образуемых емкостями на подложку активных и пассивных компонентов [8-9]. Дальнейшее повышение быстродействия параллельных АЦП - одна из проблем современной информационно-измерительной техники, решение которой позволит осуществить практическую реализацию новых систем связи и телекоммуникаций с более высокими качественными показателями.

Наиболее близким по технической сущности заявляемому устройству является параллельный АЦП, описанный в патенте фирмы IHP (Германия) DE 10 2009 002 062 fig.1, fig.2. Анализу его предельного частотного диапазона (fв.max) входных сигналов, а также попыткам увеличения fв.max за счет оптимизации абсолютных значений сопротивлений эталонных резисторов посвящены статьи [8-9], в том числе соавтора настоящей заявки [9].

АЦП-прототип фиг.1 содержит первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18.

Существенный недостаток АЦП-прототипа (фиг.1) состоит в том, что его предельный частотный диапазон преобразования входных аналоговых сигналов в цифру (даже при реализации на сверхвысокочастотных транзисторах с fmax=200 ГГц техпроцесса SGB25H1, IHP, Германия [8,9]) ограничен из-за уменьшения на высоких частотах коэффициента передачи сигнала со входов АЦП 2 и 6 до входов компараторов напряжения 9, 12, 15, 18.

Основная задача предполагаемого изобретения состоит в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников 2, 6 ко входам компараторов напряжения 9, 12, 15, 18.

Поставленная задача достигается тем, что в аналого-цифровом преобразователе фиг.1, содержащем первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18, предусмотрены новые элементы и связи -первый 2 источник входного напряжения соединен со входом первого 21 дополнительного буферного усилителя, выход которого связан с первыми 10,13.16,19 входами каждого их компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы первой группы 22, 23, 24, 25, а второй 6 источник входного противофазного напряжения связан со входом второго 26 дополнительного буферного усилителя, выход которого связан со вторыми 11, 14, 17, 20 входами каждого из компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы второй группы 27, 28, 29, 30.

На фиг.1 приведена схема АЦП-прототипа.

На фиг.2 приведена схема заявляемого устройства в соответствии с п.1 формулы изобретения.

На фиг.3 и фиг.4 показаны секции заявляемого устройства фиг.2 в соответствии с п.2 формулы изобретения.

На фиг.5 представлена схема заявляемого АЦП фиг.2 в среде Cadence на моделях SiGe транзисторов (npn 200-n; техпроцесс SG25H1, IHP, Ik.max=4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax=180/220 GHz) при использовании идеальных источников опорного тока 3 и 7 (фиг.2).

На фиг.6 приведена логарифмическая амплитудно-частотная характеристика коэффициентов передачи аналоговой секции АЦП фиг.5 со входов 2 и 6 ко входам компараторов напряжения 9, 12, 15, 18 (K1, К2, К3, К4). Из данных графиков следует, что за счет введения новых связей существенно (с 0,6 ГГц до 10,4 ГГц, т.е. в 17 раз) расширяется диапазон рабочих частот, в пределах которого коэффициент передачи по напряжению аналоговой секции отличается от низкочастотного значения не более чем на 1 дБ. На данных графиках также показано, что в схеме АЦП-прототипа коэффициент передачи начинает существенно ухудшаться при f>0,6ГГц. При этом наблюдается несимметрия коэффициентов передачи к разным компараторам (K1, К2 и К3, К4). Данный эффект в заявляемом устройстве отсутствует.

На фиг.7 представлена схема заявляемого устройства фиг.2 в среде Cadence на моделях SiGe транзисторов (npn 200-n; техпроцесс SG25H1, IHP, Ik.max=4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax =180/220 GHz) для случая, когда учитываются паразитные емкости источников опорного тока (Сп=300 фФ), что соответствует сумме емкостей на подложку и емкости коллектор-база реальных транзисторов данной схемы.

На фиг.8 приведена логарифмическая амплитудно-частотная характеристика коэффициентов передачи аналоговых секций АЦП фиг.7 со входов 2 и 6 ко входам компараторов напряжения 9, 12, 15, 18 (K1, К2, К3, К4). Из данных графиков следует, что при больших емкостях источников опорного тока (300 фФ) диапазон рабочих частот заявляемого АЦП расширяется с 0,19 ГГц до 4,0 ГГц, т.е. более, чем в 21 раз. При этом коэффициенты передачи ко входам каждого компаратора (K1, К2, К3, К4) незначительно отличаются друг от друга в широком диапазоне частот.

Таким образом, из графиков фиг.6 и фиг.8 следует, что при разных сочетаниях паразитных емкостей (т.е. в зависимости от применяемых технологии и свойств пассивных и активных компонентов) предлагаемое техническое решение обеспечивает расширение предельного диапазона рабочих частот обрабатываемых АЦП входных сигналов.

Быстродействующий аналого-цифровой преобразователь с дифференциальным входом фиг.2 содержит первый 1 входной буферный усилитель, вход которого соединен с первым 2 источником входного напряжения, а выход связан с первым 3 источником опорного тока через первую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (4.1) эталонного резистора, второго (4.2) эталонного резистора и N-го (4.N) эталонного резистора, второй 5 входной буферный усилитель, вход которого соединен со вторым 6 источником противофазного входного напряжения, а выход связан со вторым 7 источником опорного тока через вторую группу N последовательно соединенных эталонных резисторов, в т.ч. первого (8.1) эталонного резистора, второго (8.2) эталонного резистора и N-го (8.N) эталонного резистора, первый 9 компаратор напряжения, первый 10 вход которого соединен с выходом первого 1 буферного усилителя, а второй вход 11 подключен к общему узлу второго 7 источника опорного тока и N-го (8.N) эталонного резистора второй группы, второй 12 компаратор напряжения, первый 13 вход которого соединен с общим узлом первого (4.1) и второго (4.2) эталонных резисторов первой группы, а второй вход 14 подключен к общему узлу N-го (8.N) и второго (8.2) эталонных резисторов второй группы, третий 15 компаратор напряжения, первый 16 вход которого соединен с общим узлом второго (4.2) и N-го (4.N) эталонных резисторов первой группы, а второй вход 17 подключен к общему узлу второго (8.2) и первого (8.1) эталонных резисторов второй группы, N-й 18 компаратор напряжения, первый 19 вход которого соединен с общим узлом первого 3 источника опорного тока и N-го (4.N) эталонного резистора первой группы, а второй вход 20 подключен к выходу второго 5 буферного усилителя, паразитные конденсаторы, связанные со входами каждого из компараторов напряжения 9, 12, 15, 18. Первый 2 источник входного напряжения соединен со входом первого 21 дополнительного буферного усилителя, выход которого связан с первыми 10,13.16,19 входами каждого их компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы первой группы 22, 23, 24, 25, а второй 6 источник входного противофазного напряжения связан со входом второго 26 дополнительного буферного усилителя, выход которого связан со вторыми 11, 14, 17, 20 входами каждого из компараторов напряжения 9, 12, 15, 18 через соответствующие корректирующие конденсаторы второй группы 27, 28, 29, 30. Конденсаторы 31÷34 в схеме фиг.2 моделируют влияние на работу схемы АЦП паразитных емкостей на подложку используемых эталонных резисторов 4.1, 4.2, 4.N и входных емкостей компараторов 9, 12, 15, 16.

На чертежах фиг.3 и фиг.4, в соответствии с п.2 формулы изобретения, последовательно с каждым корректирующим конденсатором первой (22, 23, 24, 25) и второй (27, 28, 29, 30) групп включены соответствующие дополнительные корректирующие резисторы 35, 36, 37, 38 (фиг.3) и 39, 40, 41, 42 (фиг.4).

На фиг.4 конденсаторы 43, 44, 45, 46 моделируют паразитные емкости на входах компараторов напряжения 9, 12, 15, 18 (фиг.2).

Рассмотрим работу АЦП-прототипа фиг.1 в области высоких частот входных сигналов.

В АЦП-прототипе фиг.1 быстродействие аналоговой части (ее предельный частотный диапазон fв.max) определяется паразитными емкостями 31÷34 и 43÷44. Практически верхняя граничная частота по уровню -1 дБ АЦП-прототипа не превышает 700 МГц (фиг.6, Ск=0), в то время как быстродействие применяемых компараторов 9, 12, 15, 18, реализованных на СВЧ SiGe транзисторах [8,9] с fT=200 ГГц, позволяет работать в более широком частотном диапазоне.

В заявляемом устройстве фиг.2 за счет введения корректирующих конденсаторов 22, 23, 24, 25 и 27, 28, 29, 30 диапазон рабочих частот аналоговой секции АЦП расширяется более чем на порядок (фиг.6). Это позволяет обеспечить аналого-цифровое преобразование более высокочастотных входных сигналов.

Формирование цифрового эквивалента входного дифференциального напряжения в рассматриваемом АЦП обеспечивается традиционным методом путем анализа выходных логических уровней компараторов напряжения 9, 12, 15, 18.

Введение последовательно с корректирующими конденсаторами первой (22, 23, 24, 25) и второй (27, 28, 29, 30) групп дополнительных корректирующих резисторов (фиг.3, фиг.4) позволяет оптимизировать неравномерность амплитудно-частотной характеристики аналоговой части АЦП, что создает условия для дальнейшего расширения его предельного частотного диапазона (фиг.8).

Рассмотренный АЦП обеспечивает еще больший относительный выигрыш по частотному диапазону (с 0,19 ГГц до 4,0 ГГц) при использовании источников опорного тока 3 и 7 с повышенной емкостью на подложку Сп=300 фФ.

Таким образом, заявляемое устройство характеризуется существенными преимуществами в сравнении с прототипом по частотному диапазону обрабатываемых сигналов.

Источники информации

1. Патент US 5.589.831.

2. Патент US 5.231.399.

3. Патент US 6.437.724 fig.4.

4. Патент US 7.394.420 fig.2.

5. Патентная заявка US 2008/0036536 fig.43.

6. Патент US 4.763.106.

7. Патент US 4.912.469 fig.1.

8. Y.Borokhovych. 4-bit, 16 GS/s ADC with new Parallel Reference Network / Y.Borokhovych, H. Gustat, C.Scheytt // COMCAS 2009 - 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems.

9. Серебряков А.И. Метод повышения быстродействия параллельных АЦП / А.И.Серебряков, Е.Б. Борохович // Твердотельная электроника. Сложные функциональные блоки РЭА: Материалы научно-технической конференции. - М.: МНТОРЭС им. А.С. Попова, 2012. - С.150-155.

Класс H03M1/36 только одновременно, те АЦП параллельного типа

сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом -  патент 2523960 (27.07.2014)
цифро-аналоговый преобразователь -  патент 2523950 (27.07.2014)
сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом -  патент 2518997 (10.06.2014)
резервированный источник тока -  патент 2512890 (10.04.2014)
способ и система преобразования данных -  патент 2480902 (27.04.2013)
аналого-цифровой преобразователь (ацп) -  патент 2477564 (10.03.2013)
параллельный аналого-цифровой преобразователь динамического типа (варианты) -  патент 2389133 (10.05.2010)
дифференциальный компаратор с выборкой входного сигнала -  патент 2352061 (10.04.2009)
аналого-цифровой преобразователь -  патент 2157048 (27.09.2000)
аналого-цифровой преобразователь параллельного сравнения -  патент 2066923 (20.09.1996)
Наверх