способ получения композиционных отливок методом литья по газифицируемым моделям
Классы МПК: | B22C9/04 с применением разовых моделей |
Автор(ы): | Карев Владислав Александрович (RU), Кузьминых Евгений Васильевич (RU), Лещев Андрей Юрьевич (RU), Овчаренко Георгий Иванович (RU), Овчаренко Павел Георгиевич (RU) |
Патентообладатель(и): | Овчаренко Павел Георгиевич (RU) |
Приоритеты: |
подача заявки:
2012-09-17 публикация патента:
27.04.2014 |
Изобретение относится к области литейного производства. Способ включает изготовление моделей из пенополистирола, фиксирование вставок в модели, размещение моделей в опоке и заливку их металлическими расплавами. Вставки изготавливают компактированием легирующих порошкообразных материалов в контейнерес толщиной стенок от 0,1 мм до 20 мм. Крупность легирующих порошкообразных материалов выбирается от 1 нм до 6 мм. Обеспечивается формирование в отливках различной по составу и свойствам упрочненной легированной зоны. 2 н. и 25 з.п. ф-лы, 11 пр.
Формула изобретения
1. Способ получения композиционных отливок литьем по газифицируемым моделям, включающий изготовление моделей из пенополистирола, фиксирование вставок в модели, размещение моделей в опоке и заливку их металлическими расплавами, отличающийся тем, что вставки выполняют в виде контейнера с толщиной стенок от 0,1 мм до 20 мм, в котором компактируют легирующие порошкообразные материалы с крупностью от 1 нм до 6 мм.
2. Способ по п.1, отличающийся тем, что контейнер изготавливают требуемых геометрических размеров и формы с последующим компактированием легирующих порошкообразных материалов.
3. Способ по п.2, отличающийся тем, что контейнер изготавливают требуемых геометрических размеров и формы без донной части с последующим компактированием легирующих порошкообразных материалов.
4. Способ по любому из пп.1-3, отличающийся тем, что контейнер изготавливают из металлических материалов и сплавов с последующим компактированием легирующих порошкообразных материалов.
5. Способ по любому из пп.1-3, отличающийся тем, что контейнер изготавливают из спеченных керамических материалов с последующим компактированием легирующих порошкообразных материалов.
6. Способ по любому из пп.1-3, отличающийся тем, что контейнер изготавливают из химико-термических обработанных металлических материалов и сплавов с последующим компактированием легирующих порошкообразных материалов.
7. Способ по п.6, отличающийся тем, что в качестве легирующих порошкообразных материалов используют металлические материалы и сплавы.
8. Способ по п.7, отличающийся тем, что в качестве легирующих порошкообразных материалов используют металлические материалы и сплавы в различных сочетаниях.
9. Способ по п.8, отличающийся тем, что в качестве легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с порошками углерода, бора, оксидов, карбидов, нитридов, боридов.
10. Способ по п.9, отличающийся тем, что в качестве легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с органическими соединениями, например с уротропином, в различных сочетаниях.
11. Способ по п.10, отличающийся тем, что в качестве легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с неорганическими солями аммония, щелочных и щелочноземельных элементов, например с хлоридами калия, нитратами аммония и натрия, карбонатами кальция, бария, в различных сочетаниях.
12. Способ по п.11, отличающийся тем, что к легирующим порошкообразным материалам добавляют тепловыделяющие составы в различных сочетаниях и пропорциях.
13. Способ по п.12, отличающийся тем, что компактирование легирующих порошкообразных материалов в контейнере проводят послойно, добавляя в контейнер поверх скомпактированного слоя новую порцию легирующих порошкообразных материалов.
14. Способ по п.13, отличающийся тем, что контейнеры фиксируют в модели из пенополистирола друг над другом.
15. Способ получения композиционных отливок литьем по газифицируемым моделям, включающий изготовление моделей из пенополистирола, фиксирование вставок в модели, размещение моделей в опоке и заливку их металлическими расплавами, отличающийся тем, что вставки выполняют в виде контейнера с толщиной стенок от 0,1 мм до 20 мм, в котором фиксируют заранее скомпактированные легирующие порошкообразные материалы с крупностью от 1 нм до 6 мм.
16. Способ по п.15, отличающийся тем, что контейнер изготавливают требуемых геометрических размеров и формы с последующим фиксированием в нем заранее скомпактированных легирующих порошкообразных материалов.
17. Способ по п.16, отличающийся тем, что контейнер изготавливают требуемых геометрических размеров и формы без донной части с последующим фиксированием в нем заранее скомпактированных легирующих порошкообразных материалов.
18. Способ по любому из пп.15-17, отличающийся тем, что контейнер изготавливают из металлических материалов и сплавов с последующим фиксированием в нем заранее скомпактированных легирующих порошкообразных материалов.
19. Способ по любому из пп.15-17, отличающийся тем, что контейнер изготавливают из спеченных керамических материалов с последующим фиксированием в нем заранее скомпактированных легирующих порошкообразных материалов.
20. Способ по любому из пп.15-17, отличающийся тем, что контейнер изготавливают из химико-термических обработанных металлических материалов и сплавов с последующим фиксированием в нем заранее скомпактированных легирующих порошкообразных материалов.
21. Способ по п.20, отличающийся тем, что в качестве заранее скомпактированных легирующих порошкообразных материалов используют металлические материалы и сплавы.
22. Способ по п.21, отличающийся тем, что в качестве заранее скомпактированных легирующих порошкообразных материалов используют металлические материалы и сплавы в различных сочетаниях.
23. Способ по п.22, отличающийся тем, что в качестве заранее скомпактированных легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с порошками углерода, бора, оксидов, карбидов, нитридов, боридов.
24. Способ по п.23, отличающийся тем, что в качестве заранее скомпактированных легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с органическими соединениями, например с уротропином, в различных сочетаниях.
25. Способ по п.24, отличающийся тем, что в качестве заранее скомпактированных легирующих порошкообразных материалов используют смесь металлических материалов и сплавов с неорганическими солями аммония, щелочных и щелочноземельных элементов, например с хлоридами калия, нитратами аммония и натрия, карбонатами кальция, бария, в различных сочетаниях.
26. Способ по п.25, отличающийся тем, что к заранее скомпактированным легирующим порошкообразным материалам добавляют тепловыделяющие составы в различных сочетаниях и пропорциях.
27. Способ по п.26, отличающийся тем, что заранее скомпактированные легирующие порошкообразные материалы фиксируют в контейнере друг над другом.
Описание изобретения к патенту
Изобретение относится к области литейного производства, а именно к способам литья по газифицируемым моделям.
Из уровня техники известен способ получения отливок путем вклеивания в модель из пенополистирола пластин из твердого сплава (SU 1163977 A, B22D 19/06, 30.06.1985) и керамических вставок (RU 2219015 C1, B22D 19/06, 20.12.2003).
Недостатком данных способов является получение отливок без переходного слоя на границе металл - вставка, что может ухудшить эксплуатационные свойства отливок.
Наиболее близким по технической сущности является способ изготовления композиционных чугунных отливок, при котором вставки, изготовленные из смеси порошкообразного магния, графита, феррохрома, полистирола и ферротитана, вклеивают в пенополистироловую модель и используют ее при изготовлении литейной формы (RU 2207218 С2, B22D 27/1, 27.06.2003). При заливке чугуном входящие в состав вставки материалы обеспечивают протекание самораспространяющегося высокотемпературного синтеза, в результате которого поверхность отливки приобретает высокую износостойкость и высокопрочный переходный слой.
Недостатком данного способа является невозможность регулирования состава упрочненного слоя на отливке, а также невозможность создания переходного слоя с заданными свойствами (повышенная теплопередача, пластичность и др.).
Все это снижает универсальность способа.
Предлагаемый способ является более универсальным, по сравнению с прототипом.
Повышение универсальности способа выражается в том, что он позволяет получать композиционные отливки из различных металлических материалов и сплавов с регулированием состава вставок и формировать переходный слой требуемой толщины и свойств.
Для выполнения этой задачи предлагаемый способ включает в себя изготовление вставок путем компактирования легирующих порошкообразных материалов крупностью от 1 нм до 6 мм, в контейнере с толщиной стенок от 0,1 мм до 20 мм с последующей установкой вставок в модели из пенополистирола и заливкой металлическими расплавами. При заливке моделей металлическими расплавами протекают реакции физико-химического взаимодействия, которые инициирует тепловая энергия заливаемого расплава, между легирующими порошкообразными компактированными материалами и заливаемым расплавом, приводящие к формированию в отливке легированной зоны, а материал и толщина стенок контейнера позволяет регулировать переходный слой в отливке как по составу, так и по его толщине.
Способ осуществляется следующим образом.
Для изготовления вставок используют контейнер, в котором производят компактирование легирующих порошкообразных материалов любым известным способом (прессование, связывание легирующих порошкообразных материалов клеевыми составами, вибрационное уплотнение легирующих порошкообразных материалов в контейнере и др.). Крупность легирующих порошкообразных материалов выбирается от 1 нм до 6 мм; сочетание мелкой фракции легирующих порошкообразных материалов с более крупной позволяет обеспечить наибольшую плотность легирующих порошкообразных материалов при их компактировании. Способ компактирования легирующих порошкообразных материалов выбирается исходя из геометрических размеров, толщины стенки и материала контейнера. Для получения компактированных легирующих порошкообразных материалов высокой плотности требуется увеличить усилия прессования либо осуществлять их компактирование другими способами (спекание, изостатическое прессование, высокотемпературное прессование и др.), при этом можно повредить контейнер (особенно с небольшой толщиной стенок, изготовленный из керамических или химико-термически обработанных материалов). Во избежание повреждения контейнера при компактировании легирующих порошкообразных материалов, способ предусматривает отдельное компактирование легирующих порошкообразных материалов с последующей их установкой в контейнер. Полученные вставки фиксируют в модели из пенополистирола оптимальными способами (вклеивание, установка в пазы, впаивание в модель и другими известными способами). При заливке моделей металлическими расплавами протекают реакции физико-химического взаимодействия, которые инициирует тепловая энергия заливаемого расплава, между легирующими порошкообразными компактированными материалами и заливаемым расплавом, приводящие к формированию в отливке легированной зоны, состав и свойства которой определяются составом порошковой смеси. Это позволяет формировать в отливках различную по составу и свойствам упрочненную легированную зону. В свою очередь, материал контейнера и толщина его стенок позволяют формировать переходный слой в отливках как по составу, так и по толщине.
Применение в качестве легирующих порошкообразных материалов порошков металлических материалов и сплавов, например порошков ферросплавов, порошков хрома, железа, нержавеющей стали способствуют формированию легированной зоны в отливке с требуемыми свойствами. Использование легирующих порошкообразных металлических материалов и сплавов в различных сочетаниях позволяет регулировать состав и свойства легированной зоны в отливках (при использовании порошкообразного ферробора с порошками железа и хрома позволяет формировать легированную зону в отливке, обладающую высокой твердостью за счет формирования боридов железа и хрома). При использовании смеси порошков титана и сажи в легированной зоне формируется карбид титана; если используются порошки циркония, титана и бора (или циркония, титана и полиборида магния) в легированной зоне формируется диборид титана-хрома, обладающего высокой твердостью, наряду с высокой жаростойкостью; при добавлении к смесям порошков титана и сажи порошкообразной меди формируется легированная зона из карбида титана, обладающего высокой твердостью, а медь, входящая в состав, приводит к увеличению жаростойкости данной зоны. Для получения легированной зоны, прочно связанной с железоуглеродистыми сплавами, в качестве порошкообразных компонентов допускается использовать ферросплавы. Если к легирующим порошкообразным металлическим материалам и сплавам добавить азотированные ферросплавы (азотированный феррохром, азотированный ферросилиций, азотированный ферромарганец и др.), то легированная зона в отливке будет содержать нитридные составляющие, обладающие высокой твердостью. При добавлении к легирующим порошкообразным металлическим материалам и сплавам порошков оксидов (оксид алюминия, оксид магния, оксид титана и др.), легированная зона в отливках будет иметь повышенную жаростойкость за счет наличия в ней тугоплавких оксидов. При добавлении к легирующим порошкообразным металлическим материалам и сплавам порошков нитридов, боридов, карбидов, легированная зона в отливках будет иметь высокую твердость за счет наличия в ней нитридов, боридов и карбидов. Добавка органических соединений, например уротропина, к легирующим порошкообразным металлическим материалам (титану и саже) приводит к формированию в легированной зоне карбонитридов титана. Добавка к легирующим порошкообразным металлическим материалам неорганических солей аммония, щелочных и щелочноземельных элементов (например хлорида калия, нитрата и нитрита аммония, хлоридов калия, кальция и карбонатов бария) способствует формированию пористого слоя в легированной зоне, пористость которой зависит от состава и количества добавок неорганических солей. При формировании легированной зоны на отливках из меди (и медных сплавах) и алюминия (и алюминиевых сплавов) для инициирования реакции самораспространяющегося высокотемпературного синтеза при заливке моделей, способ предусматривает добавление к легирующим порошкообразным смесям тепловыделяющих составов - термитный состав, порошок алюмомагниевый (ПАМ), магний и др. Количество и состав тепловыделяющих смесей подбирается в каждом случае отдельно, при необходимости допустимо использовать их смесь. Для формирования легированной зоны в отливке с переменным составом данный способ предусматривает послойное компактирование легирующих порошкообразных материалов, добавляя в контейнер поверх скомпактированного слоя новую порцию легирующих порошкообразных материалов, с последующим их компактированием. Способ позволяет фиксировать контейнеры в модели из пенополистирола друг над другом, что также способствует формированию легированной зоны в отливках с переменным составом. Способ также предусматривает фиксирование заранее скомпактированных легирующих порошкообразных материалов в контейнере друг над другом, что позволяет формировать легированную зону в отливках, имеющую переменный состав.
Наличие контейнера в данном способе позволяет формировать переходный слой в отливках на границе металл - вставка. Толщина стенок контейнера выбирается от 0,1 мм до 20 мм в зависимости от требований к переходному слою и габаритам отливки (на небольших отливках эффективнее использовать контейнер с толщиной стенок до 5 мм, а при изготовлении крупных отливок - до 20 мм). В зависимости от требований к отливке, контейнер выполняется в виде различных геометрических размеров и формы. Операцию компактирования легирующей порошкообразной смеси проводят в контейнере, либо фиксируют в нем заранее скомпактированные легирующие порошкообразные материалы. Для облегчения инициирования реакции физико-химического взаимодействия легирующих порошкообразных материалов с металлическим расплавом в момент заливки моделей, контейнер допускается изготавливать без донной части. Материал контейнера из металлических материалов и сплавов определяет состав переходного слоя в отливке. При использовании контейнера из нержавеющей стали 12Х18Н10Т позволяет формировать переходный слой в отливках из железоуглеродистых сплавов, обладающий повышенной пластичностью и коррозионной стойкостью (за счет наличия хрома и никеля); контейнер, изготовленный из алюминиевого сплава, позволяет формировать переходный слой в отливках из чугунов с повышенной жаростойкостью (за счет наличия алюминия), а контейнер, изготовленный из магниевых сплавов, способствует сфериодизации графита в переходном слое отливок из чугунов; использование контейнера из меди способствует формированию переходного слоя на отливках из алюминиевых сплавов, прочно связанного с основным металлом (за счет частичного растворения меди в заливаемом алюминиевом сплаве). Для формирования в отливках переходного слоя с высокой твердостью и жаростойкостью контейнер допускается изготавливать из спеченных керамических материалов (например, на основе оксидов алюминия, бериллия, циркония и др.). Применение контейнера из химико-термически обработанных металлических материалов и сплавов позволяет формировать переходный слой в отливках требуемого состава и свойств. Использование контейнера из металлических материалов и сплавов после борирования, цементации и азотирования способствует формированию в отливках переходного слоя, обладающего высокой твердостью (за счет наличия в нем боридов, карбидов и нитридов); использование контейнера из металлических материалов и сплавов после химико-термического хромирования, силицирования и алитирования способствует формированию в отливках переходного слоя, обладающего высокой жаростойкостью (за счет наличия в нем хрома, кремния и алюминия).
Примеры конкретного исполнения
Пример 1. Для формирования легированной зоны из карбида титана смесь легирующих порошков титана и сажи компактировали путем прессования в контейнере из стали 10, с толщиной стенки 2 мм, после чего контейнер фиксировали в модели из пенополистирола и заливали расплавом стали 60Л. Легированная зона в отливках из стали 60Л обладала повышенной твердостью (за счет формирования карбида титана), а контейнер обеспечил переходную зону от основного металла к легированной зоне.
Пример 2. То же, что в примере 1, только к легирующим порошкообразным материалам (титану и саже) добавляли уротропин, а компактирование легирующих порошкообразных материалов в контейнере проводили путем связывания частиц клеевым составом. Легированная зона в отливках из стали 60Л обладала повышенной твердостью за счет наличия в ней карбонитрида титана.
Пример 3. То же, что в примере 1, только к легирующим порошкообразным материалам (титану и саже) добавляли нитрат аммония для формирования пористой легированной зоны. Легированная зона в отливках из стали 60Л обладала повышенной твердостью за счет наличия в ней карбида титана.
Пример 4. Для формирования легированной зоны, обладающей повышенной твердостью, на отливках из серого чугуна в контейнере из нержавеющей стали (с толщиной стенки 1,5 мм) компактировали легирующие порошки ферробора, феррохрома и титана методом прессования, после чего вставки фиксировали в модели из пенополистирола и заливали расплавом серого чугуна. Легированная зона в отливках обладала повышенной твердостью (за счет формирования боридов хрома и титана), а контейнер обеспечил переходную зону от основного металла к легированной зоне.
Пример 5. То же, что в примере 4, только легирующие порошкообразные материалы компактировали в контейнере из магниевого сплава с толщиной стенки 1,2 мм. Легированная зона в отливках обладала повышенной твердостью (за счет формирования боридов хрома и титана), а контейнер обеспечил переходную зону, состоящую из шаровидного и вермикулярного графита, от основного металла к легированной зоне.
Пример 6. Для формирования легированной зоны из тугоплавкого карбида титана на отливках их меди, компактировали легирующие порошки титана, сажи и порошка алюмомагниевого с добавкой окислителя (для протекания реакции) путем прессования, в медном контейнере, с толщиной стенки 1,5 мм, после чего вставки фиксировали в модели из пенополистирола и заливали расплавом меди. Легированная зона в отливках обладала повышенной жаростойкостью (за счет наличия тугоплавкого карбида титана), а порошок алюмомагниевый с добавкой окислителя являлся инициатором реакции при заливке моделей расплавом меди.
Пример 7. То же, что в примере 6, только к смеси титана, сажи и порошка алюмомагниевого с окислителем, добавляли тугоплавкие легирующие порошкообразные частицы оксидов алюминия и магния. Легированная зона в отливках обладала повышенной жаростойкостью (за счет наличия тугоплавкого карбида титана и частиц оксидов алюминия и магния), а порошок алюмомагниевый с добавкой окислителя являлся инициатором реакции при заливке моделей расплавом меди.
Пример 8. Для формирования легированной зоны, обладающей повышенной твердостью, на отливках из стали 40Л, в контейнере из стали 10 (с толщиной стенки 0,1 мм) предварительно подвергнутый борированию, фиксировали смесь заранее скомпактированных легирующих порошков ферробора, феррохрома и титана, после чего вставки фиксировали в модели из пенополистирола и заливали расплавом стали 40Л. Легированная зона в отливках обладала повышенной твердостью (за счет формирования боридов хрома и титана), а контейнер обеспечил переходную зону высокой твердости, обогащенную боридами железа. Смесь легирующих порошков ферробора, феррохрома и титана компактировали отдельно методом прессования, с последующим ее фиксированием в контейнере, во избежание его повреждения.
Пример 9. То же, что в примере 8, только в качестве заранее скомпактированных легирующих порошкообразных материалов использовали смесь титана, хрома и полиборида магния.
Пример 10. То же, что в примере 8, только в качестве заранее скомпактированных легирующих порошкообразных материалов использовали смесь титана, хрома, полиборида магния и никеля. Никель выступает в качестве связки частиц боридов титана и хрома, что позволяет получить более плотную структуру легированной зоны в отливках из стали 40Л.
Пример 11. То же, что в примере 8, только в качестве заранее скомпактированных легирующих порошкообразных материалов использовали смесь титана, хрома, борного ангидрида и магния.
Класс B22C9/04 с применением разовых моделей