жидкостный ракетный двигатель

Классы МПК:F02K9/48 приводимых в движение газовой турбиной, работающей на газообразных продуктах сгорания топлива (турбонасосная система подачи)
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Конструкторское бюро химавтоматики" (RU)
Приоритеты:
подача заявки:
2013-01-22
публикация патента:

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Целью предлагаемого изобретения является повышение энергетических возможностей ЖРД, выполненных по схеме с дожиганием генераторного газа. Поставленная цель достигается тем, что в ЖРД, содержащем камеру, газогенератор, топливные насосы и двухступенчатую турбину, питаемую генераторным газом, согласно изобретению, выход из первой ступени турбины сообщен с форсуночной головкой камеры, а выход из второй ступени турбины сообщен со входом в насос одного из компонентов топлива или с окружающей средой. 2 ил.

жидкостный ракетный двигатель, патент № 2514466 жидкостный ракетный двигатель, патент № 2514466

Формула изобретения

Жидкостный ракетный двигатель, содержащий камеру, газогенератор, топливные насосы и двухступенчатую турбину, питаемую генераторным газом, отличающийся тем, что выход из первой ступени турбины сообщен с форсуночной головкой камеры и второй ступенью турбины, а выход из второй ступени турбины сообщен со входом в насос одного из компонентов топлива или с окружающей средой.

Описание изобретения к патенту

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Одной из основных задач, стоящих при создании ЖРД, является повышение энергетических характеристик. Одним из путей повышения энергетических характеристик и уменьшения габаритов ЖРД является повышение уровня давления в камере сгорания. Однако с ростом давления в камере сгорания растет мощность топливных насосов и, соответственно растет потребная мощность турбины. Ограничением на этом пути является наличие порога роста температуры газа, приводящего в действие турбину.

Для двигателей, работающих по схеме с дожиганием газа после турбины, дополнительным ограничением является уровень давления перед турбиной, повышение которого сверх определенного уровня не дает положительного эффекта, поскольку прирост мощности турбины полностью гасится приростом потребной мощности насосов. В связи с этим все реально созданные ЖРД работают с уровнем давления в камере сгорания, не превышающим 30 МПа.

В качестве прототипа рассматривается кислородно-водородный двигатель РД0120 (см. «Ракеты-носители, космодромы», С.П. Уманский, 2001 г., изд. «Рестарт+», Москва, стр.52).

Указанный прототип выполнен по схеме с дожиганием генераторного газа и имеет в своем составе: камеру сгорания, насосы горючего и окислителя, двухступенчатую турбину, газогенератор, работающий с избытком водорода, агрегаты управления и арматуру обвязки.

Недостатком прототипа является то, что мощность турбины ограничена уровнем температуры газа перед ней и отношением давлений на турбине, от которого существенно зависит мощность последней. Целью предлагаемого изобретения является повышение энергетических возможностей ЖРД, выполненных по схеме с дожиганием генераторного газа.

Поставленная цель достигается тем, что в ЖРД, содержащем камеру, газогенератор, топливные насосы и двухступенчатую турбину, питаемую генераторным газом, согласно изобретению, выход из первой ступени турбины сообщен с форсуночной головкой камеры, а выход из второй ступени турбины сообщен со входом в насос одного из компонентов топлива или с окружающей средой.

Предлагаемое изобретение иллюстрируется схемой, приведенной на фиг.1, где показаны следующие агрегаты:

1. Камера двигателя.

2. Газогенератор.

Турбонасосный агрегат, который включает в себя:

3. Насос окислителя.

4. Насос горючего.

5. Первую ступень турбины.

6. Вторую ступень турбины.

Для упрощения схемы на фиг.1 не показаны агрегаты регулирования и управления, а также агрегаты системы поджига компонентов топлива в газогенераторе и камере двигателя.

Согласно схеме, представленной на фиг.1, двигатель состоит из камеры 1, питаемой газом из газогенератора 2, который, в свою очередь питается частью расхода окислителя из насоса 3, другая часть окислителя по трубопроводу направляется в камеру. Из насоса 4 в газогенератор поступает все горючее, прошедшее предварительно через охлаждающий тракт камеры 1. Выход из газогенератора связан со входом в первую ступень турбины 5, выход из которой связан как со входом в камеру 1, так и со входом во вторую ступень турбины, выход из которой связан со входом в насос горючего 4.

Двигатель работает следующим образом. Горючее поступает в насос 4 и далее в охлаждающий тракт камеры 1. Окислитель поступает в насос 3 и далее в газогенератор 2 и в камеру 1. Горючее, пройдя охлаждающий тракт, поступает в газогенератор 2, где они совместно с окислителем воспламеняются. Газогенератор вырабатывает газ (в приведенной схеме с избытком горючего). Газ поступает в первую ступень турбины, после которой сбрасывается в камеру и частично во вторую ступень турбины. Турбины начинают вращать насосы 3 и 4, давление за которыми повышается, двигатель выходит на расчетный режим. Для повышения перепада давления на второй ступени турбины газ после нее сбрасывается во входную магистраль горючего - магистраль с минимальным давлением. Как вариант, газ может сбрасываться в окружающую среду через сопло сброса 7 (фиг.2).

Класс F02K9/48 приводимых в движение газовой турбиной, работающей на газообразных продуктах сгорания топлива (турбонасосная система подачи)

жидкостный ракетный двигатель по схеме с дожиганием генераторного газа -  патент 2520771 (27.06.2014)
жидкостный ракетный двигатель -  патент 2514582 (27.04.2014)
способ обеспечения бессрывной работы турбонасосного агрегата многорежимного жидкостного ракетного двигателя на режимах глубокого дросселирования -  патент 2513023 (20.04.2014)
зенитная ракета и жидкостный ракетный двигатель -  патент 2496090 (20.10.2013)
жидкостный ракетный двигатель -  патент 2495273 (10.10.2013)
атомная подводная лодка -  патент 2494004 (27.09.2013)
атомная подводная лодка и жидкостный ракетный двигатель морского исполнения -  патент 2488517 (27.07.2013)
трехкомпонентный жидкостный ракетный двигатель -  патент 2484287 (10.06.2013)
кислородно-водородный жидкостный ракетный двигатель -  патент 2484286 (10.06.2013)
кислородно-водородный жидкостный ракетный двигатель -  патент 2484285 (10.06.2013)
Наверх